Suppr超能文献

钒酸盐刺激微粒体中NADH的氧化。

Vanadate-stimulated NADH oxidation in microsomes.

作者信息

Rau M, Patole M S, Vijaya S, Kurup C K, Ramasarma T

出版信息

Mol Cell Biochem. 1987 Jun;75(2):151-9. doi: 10.1007/BF00229903.

Abstract

Addition of vanadate, stimulated oxidation of NADH by rat liver microsomes. The products were NAD+ and H2O2. High rates of this reaction were obtained in the presence of phosphate buffer and at low pH values. The yellow-orange colored polymeric form of vanadate appears to be the active species and both ortho- and meta-vanadate gave poor activities even at mM concentrations. The activity as measured by oxygen uptake was inhibited by cyanide, EDTA, mannitol, histidine, ascorbate, noradrenaline, adriamycin, cytochrome c, Mn2+, superoxide dismutase, horseradish peroxidase and catalase. Mitochondrial outer membranes possess a similar activity of vanadate-stimulated NADH oxidation. But addition of mitochondria and some of its derivative particles abolished the microsomal activity. In the absence of oxygen, disappearance of NADH measured by decrease in absorbance at 340 nm continued at nearly the same rate since vanadate served as an electron acceptor in the microsomal system. Addition of excess catalase or SOD abolished the oxygen uptake while retaining significant rates of NADH disappearance indicating that the two activities are delinked. A mechanism is proposed wherein oxygen receives the first electron from NAD radical generated by oxidation of NADH by phosphovanadate and the consequent reduced species of vanadate (Viv) gives the second electron to superoxide to reduce it H2O2. This is applicable to all membranes whereas microsomes have the additional capability of reducing vanadate.

摘要

钒酸盐的添加刺激了大鼠肝脏微粒体对NADH的氧化。产物为NAD⁺和H₂O₂。在磷酸盐缓冲液存在下且pH值较低时可获得该反应的高速率。钒酸盐的橙黄色聚合形式似乎是活性物种,即使在毫摩尔浓度下,正钒酸盐和偏钒酸盐的活性都很差。通过摄氧量测定的活性受到氰化物、EDTA、甘露醇、组氨酸、抗坏血酸盐、去甲肾上腺素、阿霉素、细胞色素c、Mn²⁺、超氧化物歧化酶、辣辣过氧化物酶和过氧化氢酶的抑制。线粒体外膜具有类似的钒酸盐刺激的NADH氧化活性。但是添加线粒体及其一些衍生颗粒会消除微粒体的活性。在无氧条件下,由于钒酸盐在微粒体系统中作为电子受体,通过340nm处吸光度的降低来测量的NADH的消失仍以几乎相同的速率继续。添加过量的过氧化氢酶或超氧化物歧化酶消除了摄氧量,同时保持了显著的NADH消失速率,表明这两种活性是解偶联的。提出了一种机制,其中氧从磷酸钒酸盐氧化NADH产生的NAD自由基接收第一个电子,随后还原的钒酸盐(Viv)将第二个电子给予超氧化物以将其还原为H₂O₂。这适用于所有膜,而微粒体具有还原钒酸盐的额外能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验