Suppr超能文献

一种基于淋巴细胞亚群绝对计数的临床列线图,用于预测非小细胞肺癌患者的总生存期。

A clinical nomogram based on absolute count of lymphocyte subsets for predicting overall survival in patients with non-small cell lung cancer.

作者信息

Liu Aqing, Zhang Guan, Yang Yanjie, Xia Ying, Li Wentao, Liu Yunhe, Cui Qian, Wang Dong, Zhao Jian, Yu Jianchun

机构信息

Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.

Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.

出版信息

Int Immunopharmacol. 2023 Jan;114:109391. doi: 10.1016/j.intimp.2022.109391. Epub 2022 Dec 9.

Abstract

BACKGROUND

The absolute count of lymphocyte subsets (ACLS) is correlated to the prognosis of multiple malignancies. This study aimed to combine the ACLS with the clinicopathological parameters to develop a nomogram to accurately predict the prognosis of non-small cell lung cancer (NSCLC) patients.

METHODS

This retrospective study included a training cohort (n = 1685) and validation cohort (n = 337) with NSCLC patients treated in First Teaching Hospital of Tianjin University of Traditional Chinese Medicine between January 2018 and January 2021. Cox regression were conducted to identify factors associated with overall survival. The nomogram was built based on 10 significant factors, and evaluated by the concordance index (C-index), calibration curve and receiver operating characteristic (ROC) curve.

RESULTS

In the training cohort, the multivariate cox proportional hazard regression analysis showed that the independent factors for overall survival (OS) included age, brain metastases, hepatic metastases, respiratory system diseases, clinical stages, surgery, absolute count (AC) of CD3, CD4, CD8, and NK cells, which were all applied in the nomogram. The C-index of the nomogram to predict OS was 0.777 (95% CI, 0.751-0.802) in training cohort and 0.822 (95% CI, 0.798-0.846) in validation cohort. The area under the ROC showed a good discriminative ability in both cohorts. Calibration curves presented an excellent consistence between the nomogram predicted probability and actual observation.

CONCLUSIONS

We established a prognostic nomogram to predict OS of the NSCLC patient. This nomogram provided a more quantitative, scientific and objective basis for accurate diagnosis and individual management of NSCLC patients.

摘要

背景

淋巴细胞亚群绝对计数(ACLS)与多种恶性肿瘤的预后相关。本研究旨在将ACLS与临床病理参数相结合,开发一种列线图,以准确预测非小细胞肺癌(NSCLC)患者的预后。

方法

这项回顾性研究纳入了2018年1月至2021年1月在天津中医药大学第一附属医院接受治疗的NSCLC患者的训练队列(n = 1685)和验证队列(n = 337)。进行Cox回归以确定与总生存相关的因素。基于10个显著因素构建列线图,并通过一致性指数(C指数)、校准曲线和受试者工作特征(ROC)曲线进行评估。

结果

在训练队列中,多因素Cox比例风险回归分析显示,总生存(OS)的独立因素包括年龄、脑转移、肝转移、呼吸系统疾病、临床分期、手术、CD3、CD4、CD8和NK细胞的绝对计数(AC),这些因素均应用于列线图中。训练队列中列线图预测OS的C指数为0.777(95%CI,0.751 - 0.802),验证队列中为0.822(95%CI,0.798 - 0.846)。ROC曲线下面积在两个队列中均显示出良好的鉴别能力。校准曲线显示列线图预测概率与实际观察之间具有良好的一致性。

结论

我们建立了一种预测NSCLC患者OS的预后列线图。该列线图为NSCLC患者的准确诊断和个体化管理提供了更定量、科学和客观的依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验