文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脑啡肽酶缺失可减轻肾缺血再灌注损伤。

Deficiency of mindin reduces renal injury after ischemia reperfusion.

机构信息

Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 215 Zhongshandadao, Qiaokou, Wuhan, 430022, China.

Department of Pharmacy, Tongren Hospital of Wuhan University (Wuhan Third Hospital), No. 241 Pengliuyang Road, Wuchang, Wuhan, 430060, China.

出版信息

Mol Med. 2022 Dec 12;28(1):152. doi: 10.1186/s10020-022-00578-2.


DOI:10.1186/s10020-022-00578-2
PMID:36510147
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9743537/
Abstract

BACKGROUND: Acute renal injury (AKI) secondary to ischemia reperfusion (IR) injury continues to be a significant perioperative problem and there is no effective treatment. Mindin belongs to the mindin/F-spondin family and involves in inflammation, proliferation, and cell apoptosis. Previous studies have explored the biological functions of mindin in liver and brain ischemic injury, but its role in AKI is unknown. METHOD: To investigate whether mindin has a pathogenic role, mindin knockout (KO) and wild-type (WT) mice were used to establish renal IR model. After 30 min of ischemia and 24 h of reperfusion, renal histology, serum creatinine, and inflammatory response were examined to assess kidney injury. In vitro, proinflammatory factors and inflammatory signaling pathways were measured in mindin overexpression or knockdown and vector cells after hypoxia/reoxygenation (HR). RESULTS: Following IR, the kidney mindin level was increased in WT mice and deletion of mindin provided significant protection for mice against IR-induced renal injury as manifested by attenuated the elevation of serum creatinine and blood urea nitrogen along with less severity for histological alterations. Mindin deficiency significantly suppressed inflammatory cell infiltration, TNF-α and MCP-1 production following renal IR injury. Mechanistic studies revealed that mindin deficiency inhibits TLR4/JNK/NF-κB signaling activation. In vitro, the expression levels of TNF-α and MCP-1 were increased in mindin overexpression cells compared with vector cells following HR. Moreover, TLR4/JNK/NF-κB signaling activation was elevated in the mindin overexpression cells in response to HR stimulation while mindin knockdown inhibited the activation of TLR4/JNK/ NF-κB signaling after HR in vitro. Further study showed that mindin protein interacted directly with TLR4 protein. And more, mindin protein was confirmed to be expressed massively in renal tubule tissues of human hydronephrosis patients. CONCLUSION: These data demonstrate that mindin is a critical modulator of renal IR injury through regulating inflammatory responses. TLR4/JNK/NF-κB signaling most likely mediates the biological function of mindin in this model of renal ischemia.

摘要

背景:缺血再灌注(IR)损伤引起的急性肾损伤(AKI)仍然是围手术期的一个重大问题,目前尚无有效的治疗方法。Mindin 属于 Mindin/F-spondin 家族,参与炎症、增殖和细胞凋亡。先前的研究已经探讨了 Mindin 在肝和脑缺血性损伤中的生物学功能,但它在 AKI 中的作用尚不清楚。

方法:为了研究 Mindin 是否具有致病作用,使用 Mindin 敲除(KO)和野生型(WT)小鼠建立肾 IR 模型。在缺血 30 分钟和再灌注 24 小时后,检查肾组织学、血清肌酐和炎症反应,以评估肾损伤。在体外,在 Mindin 过表达或敲低以及载体细胞缺氧/复氧(HR)后,测量促炎因子和炎症信号通路。

结果:IR 后,WT 小鼠肾脏中的 Mindin 水平增加,Mindin 缺失对 IR 诱导的肾损伤提供了显著的保护作用,表现为血清肌酐和血尿素氮升高减轻,组织学改变减轻。Mindin 缺乏显著抑制肾 IR 损伤后的炎症细胞浸润、TNF-α 和 MCP-1 的产生。机制研究表明,Mindin 缺乏抑制 TLR4/JNK/NF-κB 信号激活。在体外,与载体细胞相比,HR 后 Mindin 过表达细胞中 TNF-α 和 MCP-1 的表达水平增加。此外,在 HR 刺激下,Mindin 过表达细胞中 TLR4/JNK/NF-κB 信号的激活增加,而在体外 HR 后,Mindin 敲低抑制 TLR4/JNK/NF-κB 信号的激活。进一步的研究表明,Mindin 蛋白与 TLR4 蛋白直接相互作用。而且,在人类肾积水患者的肾小管组织中大量表达了 Mindin 蛋白。

结论:这些数据表明,Mindin 通过调节炎症反应,成为肾 IR 损伤的关键调节因子。TLR4/JNK/NF-κB 信号可能介导了 Mindin 在这种肾缺血模型中的生物学功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/805df5094c3f/10020_2022_578_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/98da76d7e02e/10020_2022_578_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/8e5da6cebdf3/10020_2022_578_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/de3b07f90ba5/10020_2022_578_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/608a1703e649/10020_2022_578_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/2f17655c3b2f/10020_2022_578_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/df896dca2bdd/10020_2022_578_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/608c0c875c13/10020_2022_578_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/e58f24c06adb/10020_2022_578_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/b0da502bbcf8/10020_2022_578_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/18aa0f900562/10020_2022_578_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/805df5094c3f/10020_2022_578_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/98da76d7e02e/10020_2022_578_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/8e5da6cebdf3/10020_2022_578_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/de3b07f90ba5/10020_2022_578_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/608a1703e649/10020_2022_578_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/2f17655c3b2f/10020_2022_578_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/df896dca2bdd/10020_2022_578_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/608c0c875c13/10020_2022_578_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/e58f24c06adb/10020_2022_578_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/b0da502bbcf8/10020_2022_578_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/18aa0f900562/10020_2022_578_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d1e/9743537/805df5094c3f/10020_2022_578_Fig11_HTML.jpg

相似文献

[1]
Deficiency of mindin reduces renal injury after ischemia reperfusion.

Mol Med. 2022-12-12

[2]
Mindin deficiency protects the liver against ischemia/reperfusion injury.

J Hepatol. 2015-7-9

[3]
Plasma membrane-bound G protein-coupled bile acid receptor attenuates liver ischemia/reperfusion injury via the inhibition of toll-like receptor 4 signaling in mice.

Liver Transpl. 2017-1

[4]
[High STING expression exacerbates renal ischemia-reperfusion injury in mice by regulating the TLR4/NF-κB/NLRP3 pathway and promoting inflammation and apoptosis].

Nan Fang Yi Ke Da Xue Xue Bao. 2024-7-20

[5]
Sivelestat Sodium Alleviates Ischemia-Reperfusion-Induced Acute Kidney Injury via Suppressing TLR4/Myd88/NF-κB Signaling Pathway in Mice.

Drug Des Devel Ther. 2024

[6]
Tisp40 deficiency limits renal inflammation and promotes tubular cell proliferation in renal ischemia reperfusion injury.

Exp Cell Res. 2018-8-17

[7]
Mindin is a critical mediator of ischemic brain injury in an experimental stroke model.

Exp Neurol. 2013-1-27

[8]
Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis.

Int J Clin Exp Pathol. 2013-8-15

[9]
Inhibition of myeloid differentiation protein 2 attenuates renal ischemia/reperfusion-induced oxidative stress and inflammation via suppressing TLR4/TRAF6/NF-kB pathway.

Life Sci. 2020-5-29

[10]
The Ischemia and Reperfusion Injury Involves the Toll-Like Receptor-4 Participation Mainly in the Kidney Cortex.

Cell Physiol Biochem. 2022-11-16

引用本文的文献

[1]
Emerging trends and focus of Toll-like receptors in kidney diseases: a 20-year bibliometric analysis.

Front Med (Lausanne). 2025-6-13

[2]
Cardamonin mitigates kidney injury by modulating inflammation, oxidative stress, and apoptotic signaling in rats subjected to renal ischemia and reperfusion.

J Med Life. 2023-12

[3]
Blockade of Notch1 Signaling Alleviated Podocyte Injury in Lupus Nephritis Via Inhibition of NLRP3 Inflammasome Activation.

Inflammation. 2024-4

本文引用的文献

[1]
Cryptotanshinone ameliorates renal ischaemia-reperfusion injury by inhibiting apoptosis and inflammatory response.

Basic Clin Pharmacol Toxicol. 2019-7-22

[2]
Maresin 1 mitigates renal ischemia/reperfusion injury in mice via inhibition of the TLR4/MAPK/NF-κB pathways and activation of the Nrf2 pathway.

Drug Des Devel Ther. 2019-2-20

[3]
Immune mechanisms in the different phases of acute tubular necrosis.

Kidney Res Clin Pract. 2018-9

[4]
ASK1 inhibitor treatment suppresses p38/JNK signalling with reduced kidney inflammation and fibrosis in rat crescentic glomerulonephritis.

J Cell Mol Med. 2018-7-11

[5]
Salidroside protects renal tubular epithelial cells from hypoxia/reoxygenation injury in vitro.

J Pharmacol Sci. 2018-6-18

[6]
Palmitate Activates CCL4 Expression in Human Monocytic Cells via TLR4/MyD88 Dependent Activation of NF-κB/MAPK/ PI3K Signaling Systems.

Cell Physiol Biochem. 2018

[7]
Renoprotective effect of erythropoietin via modulation of the STAT6/MAPK/NF-κB pathway in ischemia/reperfusion injury after renal transplantation.

Int J Mol Med. 2017-10-20

[8]
Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury.

Kidney Int. 2017-10-20

[9]
Rutaecarpine alleviates renal ischemia reperfusion injury in rats by suppressing the JNK/p38 MAPK signaling pathway and interfering with the oxidative stress response.

Mol Med Rep. 2017-7

[10]
Chlorogenic Acid Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting TLR4/NF-κB Signal Pathway.

Inflammation. 2017-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索