Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
J Environ Sci (China). 2023 May;127:308-319. doi: 10.1016/j.jes.2022.06.004. Epub 2022 Jun 11.
Given the high abundance of water in the atmosphere, the reaction of Criegee intermediates (CIs) with (HO) is considered to be the predominant removal pathway for CIs. However, recent experimental findings reported that the reactions of CIs with organic acids and carbonyls are faster than expected. At the same time, the interface behavior between CIs and carbonyls has not been reported so far. Here, the gas-phase and air-water interface behavior between Criegee intermediates and HCHO were explored by adopting high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations. Quantum chemical calculations evidence that the gas-phase reactions of CIs + HCHO are submerged energy or low energy barriers processes. The rate ratios speculate that the HCHO could be not only a significant tropospheric scavenger of CIs, but also an inhibitor in the oxidizing ability of CIs on SO in dry and highly polluted areas with abundant HCHO concentration. The reactions of CHOO with HCHO at the droplet's surface follow a loop structure mechanism to produce i) SOZ (), ii) BHMP (HOCHOOCHOH), and iii) HMHP (HOCHOOH). Considering the harsh reaction conditions between CIs and HCHO at the interface (i.e., the two molecules must be sufficiently close to each other), the hydration of CIs is still their main atmospheric loss pathway. These results could help us get a better interpretation of the underlying CIs-aldehydes chemical processes in the global polluted urban atmospheres.
鉴于大气中高含量的水,Criegee 中间体 (CIs) 与 (HO) 的反应被认为是 CIs 的主要去除途径。然而,最近的实验结果表明,CIs 与有机酸和羰基的反应速度比预期的要快。同时,迄今为止,尚未报道 CIs 与羰基之间的界面行为。在这里,通过采用高精度量子化学计算和 Born-Oppenheimer 分子动力学 (BOMD) 模拟,研究了 Criegee 中间体和 HCHO 在气相和空气-水界面之间的行为。量子化学计算证据表明,CIs + HCHO 的气相反应是淹没能或低能垒过程。速率比推测 HCHO 不仅可以作为 CIs 在富含 HCHO 浓度的干燥和高度污染地区的重要大气清除剂,而且可以作为 CIs 对 SO 的氧化能力的抑制剂。在液滴表面,CHOO 与 HCHO 的反应遵循环结构机制,生成 i) SOZ (),ii) BHMP (HOCHOOCHOH),和 iii) HMHP (HOCHOOH)。考虑到界面上 CIs 和 HCHO 之间的苛刻反应条件(即两个分子必须足够接近),CIs 的水合作用仍然是它们在大气中主要的损失途径。这些结果可以帮助我们更好地解释全球污染城市大气中 CIs-醛类化学过程的基础。