Suppr超能文献

揭示旷工的潜在因素:一种机器学习方法。

Revealing underlying factors of absenteeism: A machine learning approach.

作者信息

Bowen Francis, Gentle-Genitty Carolyn, Siegler Janaina, Jackson Marlin

机构信息

Data Analytics and Business Intelligence Lacy School of Business, Butler University, Indianapolis, IN, United States.

School of Social Work, Indiana University Bloomington, Bloomington, IN, United States.

出版信息

Front Psychol. 2022 Dec 1;13:958748. doi: 10.3389/fpsyg.2022.958748. eCollection 2022.

Abstract

INTRODUCTION

The basis of support is understanding. In machine learning, understanding happens through assimilated knowledge and is centered on six pillars: big data, data volume, value, variety, velocity, and veracity. This study analyzes school attendance problems (SAP), which encompasses its legal statutes, school codes, students' attendance behaviors, and interventions in a school environment. The support pillars include attention to the physical classroom, school climate, and personal underlying factors impeding engagement, from which socio-emotional factors are often the primary drivers.

METHODS

This study asked the following research question: What can we learn about specific underlying factors of absenteeism using machine learning approaches? Data were retrieved from one school system available through the proprietary Building Dreams (BD) platform, owned by the Fight for Life Foundation (FFLF), whose mission is to support youth in underserved communities. The BD platform, licensed to K-12 schools, collects student-level data reported by educators on core values associated with in-class participation (a reported-negative or positive-behavior relative to the core values) based on Social-Emotional Learning (SEL) principles. We used a multi-phased approach leveraging several machine learning techniques (clustering, qualitative analysis, classification, and refinement of supervised and unsupervised learning). Unsupervised technique was employed to explore strong boundaries separating students using unlabeled data.

RESULTS

From over 20,000 recorded behaviors, we were able to train a classifier with 90.2% accuracy and uncovered a major underlying factor directly affecting absenteeism: the importance of peer relationships. This is an important finding and provides data-driven support for the fundamental idea that peer relationships are a critical factor affecting absenteeism.

DISCUSSION

The reported results provide a clear evidence that implementing socio-emotional learning components within a curriculum can improve absenteeism by targeting a root cause. Such knowledge can drive impactful policy and programming changes necessary for supporting the youth in communities overwhelmed with adversities.

摘要

引言

支持的基础是理解。在机器学习中,理解通过吸收的知识来实现,并围绕六个支柱展开:大数据、数据量、价值、多样性、速度和准确性。本研究分析了学校出勤问题(SAP),它涵盖其法律法规、学校规范、学生出勤行为以及学校环境中的干预措施。支持支柱包括关注实体课堂、学校氛围以及阻碍参与的个人潜在因素,其中社会情感因素往往是主要驱动因素。

方法

本研究提出了以下研究问题:使用机器学习方法,我们能了解到旷课的哪些具体潜在因素?数据取自通过生命之战基金会(FFLF)拥有的专有“筑梦”(BD)平台获取的一个学校系统,该基金会的使命是支持服务不足社区的青少年。BD平台授权给K - 12学校,根据社会情感学习(SEL)原则,收集教育工作者报告的与课堂参与相关的核心价值观(相对于核心价值观的报告负面或正面行为)的学生层面数据。我们采用了多阶段方法,利用多种机器学习技术(聚类、定性分析、分类以及监督和无监督学习的优化)。使用无监督技术通过未标记数据探索区分学生的强边界。

结果

从超过20000条记录的行为中,我们能够训练出一个准确率为90.2%的分类器,并发现了一个直接影响旷课的主要潜在因素:同伴关系的重要性。这是一项重要发现,为同伴关系是影响旷课的关键因素这一基本观点提供了数据驱动的支持。

讨论

报告的结果提供了明确证据,表明在课程中实施社会情感学习组件可以通过针对根本原因来改善旷课情况。这样的知识可以推动支持逆境中社区青少年所需的有影响力的政策和项目变革。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ace8/9751797/4c61b294e0d6/fpsyg-13-958748-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验