Suppr超能文献

具有双氧化还原活性位的缺阳离子铈取代钙钛矿氧化物在热化学中的应用。

Cation-Deficient Ce-Substituted Perovskite Oxides with Dual-Redox Active Sites for Thermochemical Applications.

机构信息

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.

Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland.

出版信息

ACS Appl Mater Interfaces. 2023 Jan 11;15(1):806-817. doi: 10.1021/acsami.2c15169. Epub 2022 Dec 21.

Abstract

Identifying thermodynamically favorable and stable non-stoichiometric metal oxides is of crucial importance for solar thermochemical (STC) fuel production via two-step redox cycles. The performance of a non-stoichiometric metal oxide depends on its thermodynamic properties, oxygen exchange capacity, and its phase stability under high-temperature redox cycling conditions. Perovskite oxides (ABO) are being considered as attractive alternatives to the state-of-the-art ceria (CeO) due to their high thermodynamic and structural tunability. However, perovskite oxides often exhibit low entropy change compared to ceria, as they generally have one only redox active site, leading to lower mass-specific fuel yields. Herein, we investigate cation-deficient Ce-substituted perovskite oxides as a new class of potential redox materials combining the advantages of perovskites and ceria. We newly synthesized the (CeSr)TiMnO ( = 0, 0.10, 0.15, and 0.20; CSTM) series, with dual-redox active sites comprising Ce (at the A-site) and Mn (at the B-site). By introducing a cation deficiency (∼5%), CSTM perovskite oxides with both phase purity ( ≤ 0.15) and high-temperature structural stability under STC redox cycling conditions are obtained. Thermodynamic properties are evaluated by measuring oxygen non-stoichiometry in the temperature range = 700-1400 °C and the oxygen partial pressure range O = 1-10 bar. The results demonstrate that CSTM perovskite oxides exhibit a composition-dependent simultaneous increase of enthalpy and entropy change with increasing Ce-substitution. (CeSr)TiMnO (CSTM20) showed a combination of large entropy change of ∼141 J (mol-O) K and moderate enthalpy change of ∼238 kJ (mol-O), thereby creating favorable conditions for thermochemical HO splitting. Furthermore, the oxidation states and local coordination environment around Mn, Ce, and Ti sites in the pristine and reduced CSTM samples were extensively studied using X-ray absorption spectroscopy. The results confirmed that both Ce (at the A-site) and Mn (at the B-site) centers undergo simultaneous reduction during thermochemical redox cycling.

摘要

确定热力学有利和稳定的非化学计量金属氧化物对于通过两步氧化还原循环生产太阳能热化学(STC)燃料至关重要。非化学计量金属氧化物的性能取决于其热力学性质、氧交换能力以及在高温氧化还原循环条件下的相稳定性。钙钛矿氧化物(ABO)由于其高热力学和结构可调性,被认为是传统的氧化铈(CeO)的有吸引力的替代品。然而,与氧化铈相比,钙钛矿氧化物通常表现出较低的熵变,因为它们通常只有一个氧化还原活性位,导致质量特异性燃料产率较低。在此,我们研究了阳离子缺位 Ce 取代的钙钛矿氧化物作为一种新的潜在氧化还原材料,结合了钙钛矿和氧化铈的优点。我们新合成了(CeSr)TiMnO( = 0、0.10、0.15 和 0.20;CSTM)系列,具有由 Ce(在 A 位)和 Mn(在 B 位)组成的双氧化还原活性位。通过引入阳离子缺陷(约 5%),在 STC 氧化还原循环条件下获得了具有相纯度( ≤ 0.15)和高温结构稳定性的 CSTM 钙钛矿氧化物。通过在温度范围 = 700-1400°C 和氧分压范围 O = 1-10 bar 下测量氧非化学计量比来评估热力学性质。结果表明,CSTM 钙钛矿氧化物的组成依赖性随 Ce 取代量的增加而同时增加焓和熵变。(CeSr)TiMnO(CSTM20)表现出约 141 J(mol-O)K 的大熵变和约 238 kJ(mol-O)的中等焓变的组合,从而为热化学 HO 分裂创造了有利条件。此外,使用 X 射线吸收光谱广泛研究了原始和还原的 CSTM 样品中 Mn、Ce 和 Ti 位的氧化态和局部配位环境。结果证实,Ce(在 A 位)和 Mn(在 B 位)中心在热化学氧化还原循环过程中同时发生还原。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验