Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany.
INRAE, LPGP, Rennes, France.
Nature. 2023 Jan;613(7943):308-316. doi: 10.1038/s41586-022-05547-7. Epub 2022 Dec 21.
The testis produces gametes through spermatogenesis and evolves rapidly at both the morphological and molecular level in mammals, probably owing to the evolutionary pressure on males to be reproductively successful. However, the molecular evolution of individual spermatogenic cell types across mammals remains largely uncharacterized. Here we report evolutionary analyses of single-nucleus transcriptome data for testes from 11 species that cover the three main mammalian lineages (eutherians, marsupials and monotremes) and birds (the evolutionary outgroup), and include seven primates. We find that the rapid evolution of the testis was driven by accelerated fixation rates of gene expression changes, amino acid substitutions and new genes in late spermatogenic stages, probably facilitated by reduced pleiotropic constraints, haploid selection and transcriptionally permissive chromatin. We identify temporal expression changes of individual genes across species and conserved expression programs controlling ancestral spermatogenic processes. Genes predominantly expressed in spermatogonia (germ cells fuelling spermatogenesis) and Sertoli (somatic support) cells accumulated on X chromosomes during evolution, presumably owing to male-beneficial selective forces. Further work identified transcriptomal differences between X- and Y-bearing spermatids and uncovered that meiotic sex-chromosome inactivation (MSCI) also occurs in monotremes and hence is common to mammalian sex-chromosome systems. Thus, the mechanism of meiotic silencing of unsynapsed chromatin, which underlies MSCI, is an ancestral mammalian feature. Our study illuminates the molecular evolution of spermatogenesis and associated selective forces, and provides a resource for investigating the biology of the testis across mammals.
睾丸通过精子发生产生配子,并在哺乳动物的形态和分子水平上迅速进化,这可能是由于雄性在生殖上取得成功的进化压力。然而,个体精子发生细胞类型在哺乳动物中的分子进化仍然在很大程度上没有被描述。在这里,我们报告了对来自 11 个物种的睾丸的单核转录组数据进行的进化分析,这些物种涵盖了三个主要的哺乳动物谱系(真兽类、有袋类和单孔类)和鸟类(进化的外群),包括 7 种灵长类动物。我们发现,睾丸的快速进化是由晚期精子发生阶段的基因表达变化、氨基酸替换和新基因的固定率加速驱动的,这可能是由于多效性约束减少、单倍体选择和转录允许染色质的作用。我们确定了个体基因在物种间的时间表达变化,并确定了控制祖先进精子发生过程的保守表达程序。在进化过程中,主要在精原细胞(为精子发生提供营养的生殖细胞)和支持细胞(体细胞支持)中表达的基因在 X 染色体上积累,这可能是由于雄性有利的选择压力所致。进一步的工作确定了 X 染色体和 Y 染色体携带的精子细胞之间的转录组差异,并揭示了减数分裂性染色体失活(MSCI)也发生在单孔类动物中,因此在哺乳动物性染色体系统中是常见的。因此,MSCI 所基于的未配对染色质的减数沉默机制是一个古老的哺乳动物特征。我们的研究阐明了精子发生和相关选择压力的分子进化,并为研究哺乳动物睾丸的生物学提供了一个资源。