UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, UK.
UCL Gatsby Computational Neuroscience Unit, London, UK.
Nature. 2023 Jan;613(7942):111-119. doi: 10.1038/s41586-022-05553-9. Epub 2022 Dec 21.
When faced with predatory threats, escape towards shelter is an adaptive action that offers long-term protection against the attacker. Animals rely on knowledge of safe locations in the environment to instinctively execute rapid shelter-directed escape actions. Although previous work has identified neural mechanisms of escape initiation, it is not known how the escape circuit incorporates spatial information to execute rapid flights along the most efficient route to shelter. Here we show that the mouse retrosplenial cortex (RSP) and superior colliculus (SC) form a circuit that encodes the shelter-direction vector and is specifically required for accurately orienting to shelter during escape. Shelter direction is encoded in RSP and SC neurons in egocentric coordinates and SC shelter-direction tuning depends on RSP activity. Inactivation of the RSP-SC pathway disrupts the orientation to shelter and causes escapes away from the optimal shelter-directed route, but does not lead to generic deficits in orientation or spatial navigation. We find that the RSP and SC are monosynaptically connected and form a feedforward lateral inhibition microcircuit that strongly drives the inhibitory collicular network because of higher RSP input convergence and synaptic integration efficiency in inhibitory SC neurons. This results in broad shelter-direction tuning in inhibitory SC neurons and sharply tuned excitatory SC neurons. These findings are recapitulated by a biologically constrained spiking network model in which RSP input to the local SC recurrent ring architecture generates a circular shelter-direction map. We propose that this RSP-SC circuit might be specialized for generating collicular representations of memorized spatial goals that are readily accessible to the motor system during escape, or more broadly, during navigation when the goal must be reached as fast as possible.
当面临掠夺性威胁时,逃往避难所是一种适应性行为,可以为动物提供长期的保护,免受攻击者的伤害。动物依靠对环境中安全地点的了解,本能地执行快速的避难所定向逃生行动。尽管先前的工作已经确定了逃避启动的神经机制,但尚不清楚逃避回路如何将空间信息纳入其中,以沿着最有效的路线快速飞向避难所。在这里,我们表明,小鼠后顶叶皮层(RSP)和上丘(SC)形成了一个回路,该回路对避难所方向进行编码,并且对于在逃避过程中准确地指向避难所是必需的。避难所方向在以自我为中心的坐标中在 RSP 和 SC 神经元中进行编码,并且 SC 避难所方向调谐取决于 RSP 活动。RSP-SC 通路的失活会破坏对避难所的定向,并导致逃离最佳避难所定向路线,但不会导致一般定向或空间导航缺陷。我们发现,RSP 和 SC 是单突触连接的,形成了一个前馈侧向抑制微电路,由于 RSP 输入汇聚和抑制性 SC 神经元中的突触整合效率更高,该微电路强烈驱动抑制性丘网络。这导致抑制性 SC 神经元中广泛的避难所方向调谐和兴奋性 SC 神经元中精确调谐。在一个受生物学约束的尖峰网络模型中,我们重现了这些发现,其中 RSP 对局部 SC 递归环结构的输入生成了一个圆形的避难所方向图。我们提出,这个 RSP-SC 回路可能专门用于产生记忆中空间目标的丘网络表示,这些表示在逃避过程中很容易被运动系统获取,或者更广泛地说,在导航时,必须尽快到达目标。