Suppr超能文献

平坦和波浪形地面附近俯仰翼型自推进运动的对比分析

Comparative Analysis of the Self-Propelled Locomotion of a Pitching Airfoil near the Flat and Wavy Ground.

作者信息

Xin Zhiqiang, Cai Zhiming, Ren Yiming, Liu Huachen

机构信息

The College of Mechanics and Materials, HoHai University, Nanjing 211100, China.

出版信息

Biomimetics (Basel). 2022 Dec 12;7(4):239. doi: 10.3390/biomimetics7040239.

Abstract

In this paper, a pitching airfoil near flat and wavy ground is studied by numerical simulations. The kinematic features of the airfoil and the flow field around it are analyzed to reveal unsteady vorticity dynamics of the self-propelled airfoil in ground effect. The optimal pitching periods at different initial heights above flat ground are obtained, which make the pitching airfoil achieve the maximum lift-to-drag ratio. Compared with flat ground, at the same initial height, the optimal pitching periods vary with the shape of ground. The structure and the strength of the wake vortices shedding from the airfoil are adjusted by the wavelength of ground. This leads to the changes of amplitude and occurrence times of the peak and valley of lift and drag force. The results obtained in this study can provide some inspiration for the design of underwater vehicles in the ground effect.

摘要

本文通过数值模拟研究了靠近平坦和波浪形地面的俯仰翼型。分析了翼型及其周围流场的运动学特征,以揭示地面效应下自推进翼型的非定常涡度动力学。获得了在平坦地面上方不同初始高度处的最佳俯仰周期,使俯仰翼型实现最大升阻比。与平坦地面相比,在相同初始高度下,最佳俯仰周期随地面形状而变化。地面的波长调节了从翼型脱落的尾流涡旋的结构和强度。这导致升力和阻力峰值和谷值的幅度和出现时间发生变化。本研究所得结果可为地面效应下的水下航行器设计提供一些启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/9776014/cbffa821dcc2/biomimetics-07-00239-g001.jpg

相似文献

1
Comparative Analysis of the Self-Propelled Locomotion of a Pitching Airfoil near the Flat and Wavy Ground.
Biomimetics (Basel). 2022 Dec 12;7(4):239. doi: 10.3390/biomimetics7040239.
3
Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
J Theor Biol. 2010 Oct 21;266(4):691-702. doi: 10.1016/j.jtbi.2010.07.016. Epub 2010 Jul 29.
4
Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.
Bioinspir Biomim. 2018 May 25;13(4):046005. doi: 10.1088/1748-3190/aabdb9.
5
Numerical Simulation of the Transient Flow around the Combined Morphing Leading-Edge and Trailing-Edge Airfoil.
Biomimetics (Basel). 2024 Feb 12;9(2):109. doi: 10.3390/biomimetics9020109.
6
An experimental study of trailing edge noise from a pitching airfoil.
J Acoust Soc Am. 2019 Apr;145(4):2009. doi: 10.1121/1.5094898.
7
Vortex scale of unsteady separation on a pitching airfoil.
Ann N Y Acad Sci. 2002 Oct;972:61-6. doi: 10.1111/j.1749-6632.2002.tb04553.x.
8
Some effects of domain size and boundary conditions on the accuracy of airfoil simulations.
Adv Aerodyn. 2024;6(1):7. doi: 10.1186/s42774-023-00163-z. Epub 2024 Mar 1.
9
Multifidelity kinematic parameter optimization of a flapping airfoil.
Phys Rev E. 2020 Jan;101(1-1):013107. doi: 10.1103/PhysRevE.101.013107.

本文引用的文献

1
The Ground Effect in Anguilliform Swimming.
Biomimetics (Basel). 2020 Mar 3;5(1):9. doi: 10.3390/biomimetics5010009.
2
Numerical simulation of flow over a parallel cantilevered flag in the vicinity of a rigid wall.
Phys Rev E. 2019 May;99(5-1):053111. doi: 10.1103/PhysRevE.99.053111.
3
Numerical prediction of aerodynamic performance for a flying fish during gliding flight.
Bioinspir Biomim. 2019 Jun 7;14(4):046009. doi: 10.1088/1748-3190/ab23e6.
4
Rolling and pitching oscillating foil propulsion in ground effect.
Bioinspir Biomim. 2017 Nov 27;13(1):016003. doi: 10.1088/1748-3190/aa8a12.
5
Self-propulsion of a flapping flexible plate near the ground.
Phys Rev E. 2016 Sep;94(3-1):033113. doi: 10.1103/PhysRevE.94.033113. Epub 2016 Sep 21.
6
Self-propelled swimming of a flexible plunging foil near a solid wall.
Bioinspir Biomim. 2016 Jul 5;11(4):046005. doi: 10.1088/1748-3190/11/4/046005.
7
Swimming near the substrate: a simple robotic model of stingray locomotion.
Bioinspir Biomim. 2013 Mar;8(1):016005. doi: 10.1088/1748-3182/8/1/016005. Epub 2013 Jan 15.
8
Aerodynamic characteristics of flying fish in gliding flight.
J Exp Biol. 2010 Oct 1;213(Pt 19):3269-79. doi: 10.1242/jeb.046052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验