Yang Yong, Shi Jiyuan, Huang Songrui, Ge Yuhong, Cai Wenhan, Li Qingkai, Chen Xueying, Li Xiu, Zhao Mingguo
Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
Department of Automation, Tsinghua University, Beijing 100084, China.
Biomimetics (Basel). 2022 Dec 16;7(4):244. doi: 10.3390/biomimetics7040244.
Balancing is a fundamental task in the motion control of bipedal robots. Compared to two-foot balancing, one-foot balancing introduces new challenges, such as a smaller supporting polygon and control difficulty coming from the kinematic coupling between the center of mass (CoM) and the swinging leg. Although nonlinear model predictive control (NMPC) may solve this problem, it is not feasible to implement it on the actual robot because of its large amount of calculation. This paper proposes the three-particle model predictive control (TP-MPC) approach. It combines with the hierarchical whole-body control (WBC) to solve the one-leg balancing problem in real time. The bipedal robot's torso and two legs are modeled as three separate particles without inertia. The TP-MPC generates feasible swing leg trajectories, followed by the WBC to adjust the robot's center of mass. Since the three-particle model is linear, the TP-MPC requires less computational cost, which implies real-time execution on an actual robot. The proposed method is verified in simulation. Simulation results show that our method can resist much larger external disturbance than the WBC-only control scheme.
平衡是双足机器人运动控制中的一项基本任务。与双脚平衡相比,单脚平衡带来了新的挑战,例如支撑多边形更小以及来自质心(CoM)和摆动腿之间运动学耦合的控制难度。尽管非线性模型预测控制(NMPC)可能解决这个问题,但由于其计算量巨大,在实际机器人上实现是不可行的。本文提出了三粒子模型预测控制(TP-MPC)方法。它与分层全身控制(WBC)相结合,实时解决单腿平衡问题。双足机器人的躯干和两条腿被建模为三个无惯性的独立粒子。TP-MPC生成可行的摆动腿轨迹,然后由WBC调整机器人的质心。由于三粒子模型是线性的,TP-MPC所需的计算成本较低,这意味着可以在实际机器人上实时执行。所提出的方法在仿真中得到了验证。仿真结果表明,我们的方法比仅采用WBC的控制方案能够抵抗更大的外部干扰。