Suppr超能文献

横向激励载荷作用下功能梯度简支输流微管的非线性振动分析

Analysis of Nonlinear Vibration of Functionally Graded Simply Supported Fluid-Conveying Microtubes Subjected to Transverse Excitation Loads.

作者信息

Ma Tao, Mu Anle

机构信息

School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.

School of Mechanical Engineering, Henan University of Engineering, Zhengzhou 451191, China.

出版信息

Micromachines (Basel). 2022 Nov 30;13(12):2114. doi: 10.3390/mi13122114.

Abstract

This paper presents a nonlinear vibration analysis of functionally graded simply supported fluid-conveying microtubes subjected to transverse excitation loads. The development of the nonlinear equation of motion is based on the Euler-Bernoulli theory, Hamilton principle and Strain gradient theory. The nonlinear equation of motion is reduced to a second-order nonlinear ordinary differential equation by the Galerkin method. The Runge-Kutta method is adapted to solve the equation, and the effects of the dimensionless microscale parameters, the amplitude and frequency of excitation loads on the stability of the microtubes system are analyzed. It is found that when the microtube diameter is equal to the material length scale parameter, the microtube movement pattern is quasi-periodic. With the increase of the dimensionless microscale parameter, the microtube movement changes from quasi-periodic to chaos. The smaller the power-law index of volume fraction, the smaller the vibration displacement of microtubes and the better the stability. The larger the amplitude of excitation loads is, the larger the vibration displacement of the microtubes will be. When the frequency of excitation loads is equal to the natural frequency of the microtubes, it will have resonance and the vibration displacement will increase significantly.

摘要

本文对承受横向激励载荷的功能梯度简支输流微管进行了非线性振动分析。运动非线性方程的推导基于欧拉 - 伯努利理论、哈密顿原理和应变梯度理论。通过伽辽金方法将运动非线性方程简化为二阶非线性常微分方程。采用龙格 - 库塔方法求解该方程,并分析了无量纲微尺度参数、激励载荷的幅值和频率对微管系统稳定性的影响。研究发现,当微管直径等于材料长度尺度参数时,微管的运动模式为准周期的。随着无量纲微尺度参数的增大,微管运动从准周期转变为混沌。体积分数的幂律指数越小,微管的振动位移越小,稳定性越好。激励载荷的幅值越大,微管的振动位移就越大。当激励载荷的频率等于微管的固有频率时,会发生共振,振动位移将显著增大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8b/9781620/eff668d53d97/micromachines-13-02114-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验