Suppr超能文献

-甲基腺苷位点的鉴定和预测的分析方法。

Analysis approaches for the identification and prediction of -methyladenosine sites.

机构信息

State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China.

Department of Pathology and Pathophysiology School of Medicine, Southeast University, Nanjing, China.

出版信息

Epigenetics. 2023 Dec;18(1):2158284. doi: 10.1080/15592294.2022.2158284. Epub 2022 Dec 23.

Abstract

The global dynamics in a variety of biological processes can be revealed by mapping transcriptional mA sites, in particular full-transcriptome mA. And individual mA sites have contributed to biological function, which can be evaluated by stoichiometric information obtained from the single nucleotide resolution. Currently, the identification of mA sites is mainly carried out by experiment and prediction methods, based on high-throughput sequencing and machine learning model respectively. This review summarizes the recent topics and progress made in bioinformatics methods of deciphering the mA methylation, including the experimental detection of mA methylation sites, techniques of data analysis, the way of predicting mA methylation sites, mA methylation databases, and detection of mA modification in circRNA. At the end, the essay makes a brief discussion for the development perspective in this area.

摘要

通过绘制转录 mA 位点(特别是全转录组 mA),可以揭示各种生物过程中的全球动态。单个 mA 位点对生物功能有贡献,可以通过从单核苷酸分辨率获得的化学计量信息进行评估。目前,mA 位点的识别主要通过实验和预测方法进行,分别基于高通量测序和机器学习模型。本文综述了破译 mA 甲基化的生物信息学方法的最新主题和进展,包括 mA 甲基化位点的实验检测、数据分析技术、mA 甲基化位点的预测方法、mA 甲基化数据库以及 circRNA 中的 mA 修饰检测。最后,本文对该领域的发展前景进行了简要讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa2f/9980620/75403e6cfc61/KEPI_A_2158284_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验