Department of Medicine, University of California at San Diego, San Diego, California.
Am J Physiol Heart Circ Physiol. 2023 Mar 1;324(3):H288-H292. doi: 10.1152/ajpheart.00483.2022. Epub 2022 Dec 23.
The use of digital image analysis and count regression models contributes to the reproducibility and rigor of histological studies in cardiovascular research. The use of formalized computer-based quantification strategies of histological images essentially removes potential researcher bias, allows for higher analysis throughput, and enables easy sharing of formalized quantification tools, contributing to research transparency, and data transferability. Moreover, the use of count regression models rather than ratios in statistical analysis of cell population data incorporates the extent of sampling into analysis and acknowledges the non-Gaussian nature of count distributions. Using quantification of proliferating cardiomyocytes in embryonic murine hearts as an example, we describe how these improvements can be implemented using open-source artificial intelligence-based image analysis tools and novel count regression models to efficiently analyze real-life data.
数字图像分析和计数回归模型的使用有助于提高心血管研究中组织学研究的可重复性和严谨性。使用基于计算机的组织学图像定量策略可以有效地消除潜在的研究人员偏差,提高分析通量,并能够方便地共享定量工具,从而提高研究的透明度和数据的可转移性。此外,在细胞群体数据的统计分析中使用计数回归模型而不是比率,可以将采样程度纳入分析,并承认计数分布的非正态性。本文以胚胎鼠心脏增殖性心肌细胞的定量分析为例,描述了如何使用基于人工智能的开源图像分析工具和新型计数回归模型来实现这些改进,以有效地分析实际数据。