Schöneich Sonia, Cain Caitlin N, Freye Chris E, Synovec Robert E
Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195-1700, United States.
M-7, High Explosives Science and Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Anal Chem. 2023 Jan 17;95(2):1513-1521. doi: 10.1021/acs.analchem.2c04538. Epub 2022 Dec 23.
Nontargeted analyses of low-concentration analytes in the information-rich data collected by liquid chromatography with high-resolution mass spectrometry detection can be challenging to accomplish in an efficient and comprehensive manner. The aim of this study is to demonstrate a workflow involving targeted parameter optimization for entire chromatograms using region of interest (ROI) data compression uncoupled from a subsequent tile-based Fisher ratio (-ratio) analysis, a supervised discovery-based method, for the discovery of low-concentration analytes. Soil samples spiked with 18 pesticides at nominal concentrations ranging from 0.1 to 50 ppb for a total of six sample classes served as challenging samples to demonstrate the overall workflow. Optimization of two parameters proved to be the most critical for ROI data compression: the signal threshold parameter and the admissible mass deviation parameter. The parameter optimization method workflow we introduce is based upon spiking known analytes into a representative sample and determining the number of detectable spikes and the Δppm for various combinations of the signal threshold and admissible mass deviation, where Δppm is the absolute value of the difference between the theoretical and the ROI . Once optimal parameters are determined providing the lowest average Δppm and the greatest number of detectable analytes, the optimized parameters can be utilized for the intended analysis. Herein, tile-based -ratio analysis was performed on the ROI compressed data of all spiked soil samples first by applying ROI parameters recommended in the literature, referred to herein as the initial ROI parameters, and finally by the combination of the two optimized parameters. Using the initial ROI parameters, three pesticides were discovered, whereas all 18 spiked pesticides were discovered by optimizing both ROI parameters.
利用液相色谱-高分辨率质谱检测收集的信息丰富的数据对低浓度分析物进行非靶向分析,要高效且全面地完成具有挑战性。本研究的目的是展示一种工作流程,该流程涉及使用感兴趣区域(ROI)数据压缩对整个色谱图进行靶向参数优化,该数据压缩与随后基于分块的费舍尔比率(-比率)分析(一种基于监督发现的方法)解耦,用于发现低浓度分析物。向土壤样品中添加了18种农药,标称浓度范围为0.1至50 ppb,总共六个样品类别用作具有挑战性的样品,以展示整个工作流程。事实证明,优化两个参数对ROI数据压缩最为关键:信号阈值参数和允许质量偏差参数。我们引入的参数优化方法工作流程基于将已知分析物添加到代表性样品中,并确定信号阈值和允许质量偏差的各种组合下的可检测峰数量和Δppm,其中Δppm是理论值与ROI之间差值的绝对值。一旦确定了提供最低平均Δppm和最多可检测分析物数量的最佳参数,就可以将优化后的参数用于预期分析。在此,首先通过应用文献中推荐的ROI参数(本文称为初始ROI参数),最后通过两个优化参数的组合,对所有加标土壤样品的ROI压缩数据进行基于分块的-比率分析。使用初始ROI参数发现了三种农药,而通过优化两个ROI参数发现了所有18种加标的农药。