Suppr超能文献

将机器学习应用于预测接受MeltDose配方的肝肾移植患者的他克莫司暴露量。

Application of machine learning to predict tacrolimus exposure in liver and kidney transplant patients given the MeltDose formulation.

作者信息

Ponthier Laure, Marquet Pierre, Moes Dirk Jan A R, Rostaing Lionel, van Hoek Bart, Monchaud Caroline, Labriffe Marc, Woillard Jean Baptiste

机构信息

P&T, Univ. Limoges, INSERM, Limoges, France.

Department of Pediatrics, CHU Limoges, Limoges, France.

出版信息

Eur J Clin Pharmacol. 2023 Feb;79(2):311-319. doi: 10.1007/s00228-022-03445-5. Epub 2022 Dec 24.

Abstract

PURPOSE

Machine Learning (ML) algorithms represent an interesting alternative to maximum a posteriori Bayesian estimators (MAP-BE) for tacrolimus AUC estimation, but it is not known if training an ML model using a lower number of full pharmacokinetic (PK) profiles (= "true" reference AUC) provides better performances than using a larger dataset of less accurate AUC estimates. The objectives of this study were: to develop and benchmark ML algorithms trained using full PK profiles to estimate MeltDose-tacrolimus individual AUCs using 2 or 3 blood concentrations; and to compare their performance to MAP-BE.

METHODS

Data from liver (n = 113) and kidney (n = 97) transplant recipients involved in MeltDose-tacrolimus PK studies were used for the training and evaluation of ML algorithms. "True" AUC0-24 h was calculated for each patient using the trapezoidal rule on the full PK profile. ML algorithms were trained to estimate tacrolimus true AUC using 2 or 3 blood concentrations. Performances were evaluated in 2 external sets of 16 (renal) and 48 (liver) transplant patients.

RESULTS

Best estimation performances were obtained with the MARS algorithm and the following limited sampling strategies (LSS): predose (0), 8, and 12 h post-dose (rMPE = - 1.28%, rRMSE = 7.57%), or 0 and 12 h (rMPE = - 1.9%, rRMSE = 10.06%). In the external dataset, the performances of the final ML algorithms based on two samples in kidney (rMPE = - 3.1%, rRMSE = 11.1%) or liver transplant recipients (rMPE = - 3.4%, rRMSE = 9.86%) were as good as or better than those of MAP-BEs based on three time points.

CONCLUSION

The MARS ML models developed using "true" MeltDose-tacrolimus AUCs yielded accurate individual estimations using only two blood concentrations.

摘要

目的

机器学习(ML)算法是用于估算他克莫司曲线下面积(AUC)的最大后验贝叶斯估计器(MAP-BE)的一种有趣替代方法,但尚不清楚使用较少数量的完整药代动力学(PK)曲线(=“真实”参考AUC)训练ML模型是否比使用较大的不太准确的AUC估计数据集能提供更好的性能。本研究的目的是:开发并评估使用完整PK曲线训练的ML算法,以利用2个或3个血药浓度估算MeltDose他克莫司的个体AUC;并将其性能与MAP-BE进行比较。

方法

来自参与MeltDose他克莫司PK研究的肝移植受者(n = 113)和肾移植受者(n = 97)的数据用于ML算法的训练和评估。使用完整PK曲线上的梯形法则为每位患者计算“真实”的AUC0-24h。训练ML算法以利用2个或3个血药浓度估算他克莫司的真实AUC。在2组外部的16例(肾)和48例(肝)移植患者中评估性能。

结果

使用MARS算法和以下有限采样策略(LSS)获得了最佳估计性能:给药前(0)、给药后8小时和12小时(相对平均百分比误差[rMPE]= -1.28%,相对均方根误差[rRMSE]= 7.57%),或0小时和12小时(rMPE = -1.9%,rRMSE = 10.06%)。在外部数据集中,基于两个样本的最终ML算法在肾移植受者(rMPE = -3.1%,rRMSE = 11.1%)或肝移植受者(rMPE = -3.4%,rRMSE = 9.86%)中的性能与基于三个时间点的MAP-BE相当或更好。

结论

使用“真实”的MeltDose他克莫司AUC开发的MARS ML模型仅使用两个血药浓度就能得出准确的个体估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验