Suppr超能文献

对三种压力因素组合对种群适应度的荟萃分析揭示了大量的高阶相互作用。

Meta-analysis of three-stressor combinations on population-level fitness reveal substantial higher-order interactions.

机构信息

Ecology and Evolutionary Biology, University of California, Los Angeles, USA.

Ecology and Evolutionary Biology, University of California, Los Angeles, USA; Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA; Santa Fe Institute, Santa Fe, NM, USA.

出版信息

Sci Total Environ. 2023 Mar 15;864:161163. doi: 10.1016/j.scitotenv.2022.161163. Epub 2022 Dec 24.

Abstract

Although natural populations are typically subjected to multiple stressors, most past research has focused on single-stressor and two-stressor interactions, with little attention paid to higher-order interactions among three or more stressors. However, higher-order interactions increasingly appear to be widespread. Consequently, we used a recently introduced and improved framework to re-analyze higher-order ecological interactions. We conducted a literature review of the last 100 years (1920-2020) and reanalyzed 142 ecological three-stressor interactions on species' populations from 38 published papers; the vast majority of these studies were from the past 10 years. We found that 95.8 % (n = 136) of the three-stressor combinations had either not been categorized before or resulted in different interactions than previously reported. We also found substantial levels of emergent properties-interactions that are not due to strong pairwise interactions within the combination but rather uniquely due to all three stressors being combined. Calculating net interactions-the overall accounting for all possible interactions within a combination including the emergent and all pairwise interactions-we found that the most prevalent interaction type is antagonism, corresponding to a smaller than expected effect based on single stressor effects. In contrast, for emergent interactions, the most prevalent interaction type is synergistic, resulting in a larger than expected effect based on single stressor effects. Additionally, we found that hidden suppressive interactions-where a pairwise interaction is suppressed by a third stressor-are found in the majority of combinations (74 %). Collectively, understanding multiple stressor interactions through applying an appropriate framework is crucial for answering fundamental questions in ecology and has implications for conservation biology and population management. Crucially, identifying emergent properties can reveal hidden suppressive interactions that could be particularly important for the ecological management of at-risk populations.

摘要

尽管自然种群通常会受到多种胁迫因素的影响,但大多数过去的研究都集中在单一胁迫因素和两种胁迫因素的相互作用上,而很少关注三种或更多胁迫因素之间的更高阶相互作用。然而,更高阶的相互作用似乎越来越普遍。因此,我们使用了一个最近引入和改进的框架来重新分析更高阶的生态相互作用。我们对过去 100 年(1920-2020 年)的文献进行了回顾,并重新分析了 38 篇已发表论文中 142 个关于物种种群的三因素生态相互作用;这些研究绝大多数来自过去 10 年。我们发现,95.8%(n=136)的三因素组合以前没有被分类,或者导致的相互作用与以前报道的不同。我们还发现了大量涌现的特性——不是由于组合中三个因素之间的强相互作用,而是由于三个因素的组合而产生的独特相互作用。计算净相互作用——即组合内所有可能相互作用的总体核算,包括涌现的和所有两两相互作用——我们发现最常见的相互作用类型是拮抗作用,这对应于基于单一胁迫因素效应的预期效应较小。相比之下,对于涌现的相互作用,最常见的相互作用类型是协同作用,这导致的效应大于基于单一胁迫因素效应的预期效应。此外,我们发现隐藏的抑制相互作用——其中一个两两相互作用被第三个胁迫因素抑制——在大多数组合中都存在(74%)。总的来说,通过应用适当的框架来理解多种胁迫因素的相互作用对于回答生态学中的基本问题至关重要,并且对保护生物学和种群管理具有重要意义。至关重要的是,识别涌现的特性可以揭示隐藏的抑制相互作用,这些相互作用对于处于风险中的种群的生态管理可能尤为重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验