Department of Pediatrics, Division of Cardiology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.
Netherlands Heart Institute, Utrecht, the Netherlands.
J Magn Reson Imaging. 2023 Sep;58(3):794-804. doi: 10.1002/jmri.28568. Epub 2022 Dec 26.
Manually segmenting cardiac structures is time-consuming and produces variability in MRI assessments. Automated segmentation could solve this. However, current software is developed for adults without congenital heart defects (CHD).
To evaluate automated segmentation of left ventricle (LV) and right ventricle (RV) for pediatric MRI studies.
Retrospective comparative study.
Twenty children per group of: healthy children, LV-CHD, tetralogy of Fallot (ToF), and univentricular CHD, aged 11.7 [8.9-16.0], 14.2 [10.6-15.7], 14.6 [11.6-16.4], and 12.2 [10.2-14.9] years, respectively.
SEQUENCE/FIELD STRENGTH: Balanced steady-state free precession at 1.5 T.
Biventricular volumes and masses were calculated from a short-axis stack of images, which were segmented manually and using two fully automated software suites (Medis Suite 3.2, Medis, Leiden, the Netherlands and SuiteHeart 5.0, Neosoft LLC, Pewaukee, USA). Fully automated segmentations were manually adjusted to provide two further sets of segmentations. Fully automated and adjusted automated segmentation were compared to manual segmentation. Segmentation times and reproducibility for each method were assessed.
Bland Altman analysis and intraclass correlation coefficients (ICC) were used to compare volumes and masses between methods. Postprocessing times were compared by paired t-tests.
Fully automated methods provided good segmentation (ICC > 0.90 compared to manual segmentation) for the LV in the healthy and left-sided CHD groups (eg LV-EDV difference for healthy children 1.4 ± 11.5 mL, ICC: 0.97, for Medis and 3.0 ± 12.2 mL, ICC: 0.96 for SuiteHeart). Both automated methods gave larger errors (ICC: 0.62-0.94) for the RV in these populations, and for all structures in the ToF and univentricular CHD groups. Adjusted automated segmentation agreed well with manual segmentation (ICC: 0.71-1.00), improved reproducibility and reduced segmentation time in all patient groups, compared to manual segmentation.
Fully automated segmentation eliminates observer variability but may produce large errors compared to manual segmentation. Manual adjustments reduce these errors, improve reproducibility, and reduce postprocessing times compared to manual segmentation. Adjusted automated segmentation is reasonable in children with and without CHD.
Stage 2.
手动分割心脏结构既耗时又会导致 MRI 评估的变异性。自动化分割可以解决这个问题。然而,当前的软件是为没有先天性心脏病(CHD)的成年人开发的。
评估用于儿科 MRI 研究的左心室(LV)和右心室(RV)的自动分割。
回顾性比较研究。
每组 20 名儿童:健康儿童、LV-CHD、法洛四联症(ToF)和单心室 CHD,年龄分别为 11.7 [8.9-16.0]、14.2 [10.6-15.7]、14.6 [11.6-16.4]和 12.2 [10.2-14.9]岁。
序列/场强:1.5 T 平衡稳态自由进动。
从短轴图像堆栈中计算双心室容积和质量,手动和使用两种全自动软件套件(Medis Suite 3.2,荷兰 Medis 和 SuiteHeart 5.0,美国 Neosoft LLC)进行分割。全自动分割手动调整,以提供另外两组分割。比较全自动和调整后的自动分割与手动分割。评估了每种方法的分割时间和可重复性。
使用 Bland-Altman 分析和组内相关系数(ICC)比较方法之间的体积和质量。通过配对 t 检验比较后处理时间。
全自动方法为健康和左侧 CHD 组的 LV 提供了良好的分割(与手动分割相比 ICC>0.90)(例如健康儿童的 LV-EDV 差异为 1.4±11.5 mL,ICC:0.97,Medis 和 3.0±12.2 mL,ICC:0.96,用于 SuiteHeart)。对于这些人群中的 RV 和所有 ToF 和单心室 CHD 组的结构,两种自动方法都产生了更大的误差(ICC:0.62-0.94)。与手动分割相比,调整后的自动分割在所有患者组中都与手动分割一致(ICC:0.71-1.00),提高了可重复性并减少了分割时间。
全自动分割消除了观察者的变异性,但与手动分割相比,可能会产生较大的误差。手动调整可减少这些误差,提高可重复性,并减少与手动分割相比的后处理时间。调整后的自动分割在有或没有 CHD 的儿童中是合理的。
3
第 2 阶段