Oanta Alexander K, Collins Kelsey A, Evans Austin M, Pratik Saied Md, Hall Lyndon A, Strauss Michael J, Marder Seth R, D'Alessandro Deanna M, Rajh Tijana, Freedman Danna E, Li Hong, Brédas Jean-Luc, Sun Lei, Dichtel William R
Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States.
Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona85721, United States.
J Am Chem Soc. 2023 Jan 11;145(1):689-696. doi: 10.1021/jacs.2c11784. Epub 2022 Dec 27.
Molecular electronic spin qubits are promising candidates for quantum information science applications because they can be reliably produced and engineered via chemical design. Embedding electronic spin qubits within two-dimensional polymers (2DPs) offers the possibility to systematically engineer inter-qubit interactions while maintaining long coherence times, both of which are prerequisites to their technological utility. Here, we introduce electronic spin qubits into a diamagnetic 2DP by -doping naphthalene diimide subunits with varying amounts of CoCp and analyze their spin densities by quantitative electronic paramagnetic resonance spectroscopy. Low spin densities (, 6.0 × 10 spins mm) enable lengthy spin-lattice () and spin-spin relaxation () times across a range of temperatures, ranging from values of 164 ms at 10 K to 30.2 μs at 296 K and values of 2.36 μs at 10 K to 0.49 μs at 296 K for the lowest spin density sample examined. Higher spin densities and temperatures were both found to diminish times, which we attribute to detrimental cross-relaxation from spin-spin dipolar interactions and spin-phonon coupling, respectively. Higher spin densities decreased times and modulated the temperature dependence. We attribute these differences to the competition between hyperfine and dipolar interactions for electron spin decoherence, with the dominant interaction transitioning from the former to the latter as spin density and temperature increase. Overall, this investigation demonstrates that dispersing electronic spin qubits within layered 2DPs enables chemical control of their inter-qubit interactions and spin decoherence times.
分子电子自旋量子比特是量子信息科学应用中很有前景的候选者,因为它们可以通过化学设计可靠地产生和构建。将电子自旋量子比特嵌入二维聚合物(2DPs)中,为系统地构建量子比特间相互作用提供了可能性,同时保持较长的相干时间,这两者都是其技术应用的先决条件。在这里,我们通过用不同量的CoCp对萘二亚胺亚基进行n - 掺杂,将电子自旋量子比特引入到一种抗磁性的2DP中,并通过定量电子顺磁共振光谱分析它们的自旋密度。低自旋密度(,6.0×10¹⁸自旋/mm³)使得在一系列温度下都有较长的自旋 - 晶格(T₁)和自旋 - 自旋弛豫(T₂)时间,对于所研究的最低自旋密度样品,T₁值在10 K时为164 ms,在296 K时为30.2 μs;T₂值在10 K时为2.36 μs,在296 K时为0.49 μs。发现较高的自旋密度和温度都会缩短T₁时间,我们分别将其归因于自旋 - 自旋偶极相互作用和自旋 - 声子耦合导致的有害交叉弛豫。较高的自旋密度缩短了T₂时间并调节了T₂的温度依赖性。我们将这些差异归因于超精细相互作用和偶极相互作用在电子自旋退相干方面的竞争,随着自旋密度和温度的增加,主导相互作用从前一种转变为后一种。总体而言,这项研究表明,将电子自旋量子比特分散在层状2DPs中能够对它们的量子比特间相互作用和自旋退相干时间进行化学控制。