Suppr超能文献

[基于液体弹簧驱动的自供力源动力辅助膝关节矫形器的设计与生物力学分析]

[Design and biomechanical analysis of a self-force source power-assisted knee orthotics actuated by liquid spring].

作者信息

Zhang Xuan, Feng Shuo, Chen Zhenxian, Zhang Jing, Jin Zhongmin

机构信息

School of Construction Machinery, Chang'an University, Xi'an 710064, P.R. China.

School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Dec 25;39(6):1199-1208. doi: 10.7507/1001-5515.202206021.

Abstract

A micro silicone oil liquid spring was designed and manufactured in this article. The performance of the liquid spring was studied by simulation analysis and mechanical test. A self-force source power-assisted knee orthosis was designed based on the liquid spring. This power-assisted knee orthosis can convert the kinetic energy of knee flexion into the elastic potential energy of liquid spring for storage, and release elastic potential energy to generate assisted torque which drives the knee joint for extension. The results showed that the average maximum reset force of the liquid spring was 1 240 N, and the average maximum assisted torque for the knee joint was 29.8 N·m. A musculoskeletal multibody dynamic model was used to analyze the biomechanical effect of the knee orthosis on the joint during knee bending (90°knee flexion). The results showed that the power-assisted knee orthosis could effectively reduce the biomechanical load of the knee joint for the user with a body weight of 80 kg. The maximum forces of the femoral-tibial joint force, patellar-femoral joint force, and quadriceps-ligament force were reduced by 24.5%, 23.8%, and 21.2%, respectively. The power-assisted knee orthosis designed in this article provides sufficient assisted torque for the knee joint. It lays a foundation for the subsequent commercial application due to its small size and lightweight.

摘要

本文设计并制造了一种微型硅油液体弹簧。通过仿真分析和力学试验研究了液体弹簧的性能。基于液体弹簧设计了一种自供力源助力膝关节矫形器。这种助力膝关节矫形器能够将膝关节屈曲的动能转化为液体弹簧的弹性势能进行储存,并释放弹性势能以产生辅助扭矩,驱动膝关节伸展。结果表明,液体弹簧的平均最大复位力为1240N,膝关节的平均最大辅助扭矩为29.8N·m。采用肌肉骨骼多体动力学模型分析了膝关节矫形器在膝关节弯曲(屈膝90°)过程中对关节的生物力学影响。结果表明,对于体重80kg的使用者,该助力膝关节矫形器能够有效降低膝关节的生物力学负荷。股骨-胫骨关节力、髌股关节力和股四头肌-韧带力的最大值分别降低了24.5%、23.8%和21.2%。本文设计的助力膝关节矫形器为膝关节提供了足够的辅助扭矩。由于其尺寸小、重量轻,为后续的商业应用奠定了基础。

相似文献

1
[Design and biomechanical analysis of a self-force source power-assisted knee orthotics actuated by liquid spring].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Dec 25;39(6):1199-1208. doi: 10.7507/1001-5515.202206021.
2
3
A wearable robotic orthosis with a spring-assist actuator.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5051-5054. doi: 10.1109/EMBC.2016.7591862.
4
A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
J Biomech. 1997 Feb;30(2):163-76. doi: 10.1016/s0021-9290(96)00119-4.
6
Anterior referencing of tibial slope in total knee arthroplasty considerably influences knee kinematics: a musculoskeletal simulation study.
Knee Surg Sports Traumatol Arthrosc. 2018 May;26(5):1540-1548. doi: 10.1007/s00167-017-4561-3. Epub 2017 May 12.
7
Reconstruction of knees with combined cruciate deficiencies: a biomechanical study.
J Bone Joint Surg Am. 2003 Sep;85(9):1768-74. doi: 10.2106/00004623-200309000-00016.
9
The biomechanics of the human patella during passive knee flexion.
J Biomech. 1995 Nov;28(11):1265-79. doi: 10.1016/0021-9290(95)00059-q.
10

本文引用的文献

1
Compromised knee internal rotation in total knee arthroplasty patients during stair climbing.
PLoS One. 2018 Oct 10;13(10):e0205492. doi: 10.1371/journal.pone.0205492. eCollection 2018.
2
Prediction of hip joint load and translation using musculoskeletal modelling with force-dependent kinematics and experimental validation.
Proc Inst Mech Eng H. 2015 Jul;229(7):477-90. doi: 10.1177/0954411915589115. Epub 2015 Jun 10.
3
Design and evaluation of an orthotic knee-extension assist.
IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):678-87. doi: 10.1109/TNSRE.2012.2202250. Epub 2012 Jun 8.
4
Unload it: the key to the treatment of knee osteoarthritis.
Knee Surg Sports Traumatol Arthrosc. 2011 Nov;19(11):1823-9. doi: 10.1007/s00167-011-1403-6. Epub 2011 Feb 5.
5
Noninvasive devices targeting the mechanics of osteoarthritis.
Rheum Dis Clin North Am. 2008 Aug;34(3):755-76. doi: 10.1016/j.rdc.2008.06.001.
6
Development of a hinge compatible with the kinematics of the knee joint.
Prosthet Orthot Int. 2007 Dec;31(4):371-83. doi: 10.1080/03093640601095842.
7
Patellofemoral joint osteoarthritis: an important subgroup of knee osteoarthritis.
Rheumatology (Oxford). 2007 Jul;46(7):1057-62. doi: 10.1093/rheumatology/kem114. Epub 2007 May 11.
8
Isolated patellofemoral osteoarthritis.
Knee. 2007 Jun;14(3):169-76. doi: 10.1016/j.knee.2006.11.002. Epub 2007 Jan 11.
9
Osteoarthritis: an overview of the disease and its treatment strategies.
Semin Arthritis Rheum. 2005 Aug;35(1 Suppl 1):1-10. doi: 10.1016/j.semarthrit.2005.01.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验