Suppr超能文献

通过自动纤维定量评估台风相关创伤后应激障碍中的异常白质微观结构

Aberrant white matter microstructure evaluation by automated fiber quantification in typhoon-related post-traumatic stress disorder.

作者信息

Zhang Yiying, Chen Huijuan, Qi Rongfeng, Ke Jun, Xu Qiang, Zhong Yuan, Wu Yanglei, Guo Yihao, Lu Guangming, Chen Feng

机构信息

Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan Medical University, No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China.

Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.

出版信息

Brain Imaging Behav. 2023 Apr;17(2):213-222. doi: 10.1007/s11682-022-00755-1. Epub 2022 Dec 28.

Abstract

Super typhoons can lead to post-traumatic stress disorder (PTSD), which can adversely affect a person's mental health after a disaster. Neuroimaging studies suggest that patients with PTSD may have post-exposure abnormalities of the white matter. However, little is known about these defects, if they are localized to specific regions of the white matter fibers, or whether they may be potential biomarkers for PTSD. Typhoon survivors with PTSD (n = 27), trauma-exposed controls (TEC) (n = 33), and healthy controls (HCs) (n = 30) were enrolled. We used automated fiber quantification (AFQ) to process the participants' DTI and compared diffusion metrics among the three groups. To evaluate diagnostic value, we used support vector machine (SVM) and a random forest (RF) classifier to build a machine learning model. White matter fiber segmentation between the three groups was found to be statistically significant for the fractional anisotropy (FA) value of the right anterior thalamic radiation (ATR) (26-50 nodes) and right uncinate fasciculus (UF) (60-72 nodes) (FDR correction, p < 0.05). By analyzing the characteristics of the machine learning model, the two most important variables were the right ATR and right UF for differentiating PTSD and trauma-exposed controls (TEC) from the healthy controls (HC). In addition, the left cingulum cingulate and left UF were the most critical variables in the differentiation of PTSD and TEC. AFQ with machine learning can localize abnormalities in specific regions of white matter fibers. These regions may be used as a diagnostic biomarker for PTSD.

摘要

超级台风可导致创伤后应激障碍(PTSD),这会在灾难后对人的心理健康产生不利影响。神经影像学研究表明,PTSD患者可能在暴露后出现白质异常。然而,对于这些缺陷是否局限于白质纤维的特定区域,或者它们是否可能是PTSD的潜在生物标志物,人们知之甚少。我们招募了患有PTSD的台风幸存者(n = 27)、遭受创伤的对照组(TEC)(n = 33)和健康对照组(HC)(n = 30)。我们使用自动纤维定量(AFQ)来处理参与者的扩散张量成像(DTI),并比较三组之间的扩散指标。为了评估诊断价值,我们使用支持向量机(SVM)和随机森林(RF)分类器构建机器学习模型。发现三组之间白质纤维分割在右侧丘脑前辐射(ATR)(26 - 50节段)和右侧钩束(UF)(60 - 72节段)的分数各向异性(FA)值上具有统计学意义(FDR校正,p < 0.05)。通过分析机器学习模型的特征,区分PTSD和遭受创伤的对照组(TEC)与健康对照组(HC)的两个最重要变量是右侧ATR和右侧UF。此外,左侧扣带束和左侧UF是区分PTSD和TEC的最关键变量。结合机器学习的AFQ可以定位白质纤维特定区域的异常。这些区域可作为PTSD的诊断生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验