State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211800, China.
Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, Dresden01187, Germany.
ACS Appl Mater Interfaces. 2023 Jan 11;15(1):1339-1347. doi: 10.1021/acsami.2c19343. Epub 2022 Dec 29.
Protonic ceramic fuel cells (PCFCs), as an efficient energy storage and conversion device, have great potential to solve the serious problems of energy shortage and environmental pollution. Improving the proton conductivity of the promising cathode materials is an effective solution to promote the widespread application of PCFCs at low temperatures (450-650 °C). Herein, considering the high oxygen reduction reaction (ORR) activity of BaCoO-based perovskite oxide and beneficial proton uptake capacity of Zn-doping, we construct BaCoFeZnYO (BCFZnY) as the PCFCs cathode, and compare it with the classic triple-conducting cathode BaCoFeZrYO (BCFZrY). Different from the general strategy of increasing the initial oxygen vacancy concentration of cathode materials, this work unveils that enhancing the hydration of perovskite oxide with low oxygen vacancy concentration is a more effective strategy to accelerate the proton diffusion in the electrode. Therefore, the BCFZnY cathode achieved excellent proton conductivities of 8.05 × 10 and 6.38 × 10 S cm as obtained by hydrogen permeation measurements and peak power densities of 982 and 320 mW cm in a BaZrCeYYbO-based anode-supported fuel cell at 600 and 450 °C, respectively.
质子陶瓷燃料电池(PCFCs)作为一种高效的能量存储和转换装置,具有很大的潜力来解决能源短缺和环境污染等严重问题。提高有前途的阴极材料的质子电导率是促进 PCFCs 在低温(450-650°C)下广泛应用的有效解决方案。在此,考虑到 BaCoO 基钙钛矿氧化物的高氧还原反应(ORR)活性和 Zn 掺杂的有利质子吸收能力,我们构建了 BaCoFeZnYO(BCFZnY)作为 PCFCs 的阴极,并将其与经典的三导体阴极 BaCoFeZrYO(BCFZrY)进行了比较。与通常增加阴极材料初始氧空位浓度的策略不同,这项工作揭示了增强低氧空位浓度钙钛矿氧化物的水合作用是加速电极中质子扩散的更有效策略。因此,BCFZnY 阴极在 BaZrCeYYbO 基阳极支撑燃料电池中分别在 600°C 和 450°C 下实现了 8.05×10 和 6.38×10 S cm 的优异质子电导率,通过氢渗透测量和峰值功率密度分别为 982 和 320 mW cm。