Rundle John B, Yazbeck Joe, Donnellan Andrea, Fox Geoffrey, Ludwig Lisa Grant, Heflin Michael, Crutchfield James
Department of Physics University of California Davis CA USA.
Santa Fe Institute Santa Fe NM USA.
Earth Space Sci. 2022 Nov;9(11):e2022EA002343. doi: 10.1029/2022EA002343. Epub 2022 Oct 26.
Nowcasting is a term originating from economics, finance, and meteorology. It refers to the process of determining the uncertain state of the economy, markets or the weather at the current time by indirect means. In this paper, we describe a simple two-parameter data analysis that reveals hidden order in otherwise seemingly chaotic earthquake seismicity. One of these parameters relates to a mechanism of seismic quiescence arising from the physics of strain-hardening of the crust prior to major events. We observe an earthquake cycle associated with major earthquakes in California, similar to what has long been postulated. An estimate of the earthquake hazard revealed by this state variable time series can be optimized by the use of machine learning in the form of the Receiver Operating Characteristic skill score. The ROC skill is used here as a loss function in a supervised learning mode. Our analysis is conducted in the region of 5° × 5° in latitude-longitude centered on Los Angeles, a region which we used in previous papers to build similar time series using more involved methods (Rundle & Donnellan, 2020, https://doi.org/10.1029/2020EA001097; Rundle, Donnellan et al., 2021, https://doi.org/10.1029/2021EA001757; Rundle, Stein et al., 2021, https://doi.org/10.1088/1361-6633/abf893). Here we show that not only does the state variable time series have forecast skill, the associated spatial probability densities have skill as well. In addition, use of the standard ROC and Precision (PPV) metrics allow probabilities of current earthquake hazard to be defined in a simple, straightforward, and rigorous way.
临近预报是一个源于经济学、金融学和气象学的术语。它指的是通过间接手段确定当前经济、市场或天气的不确定状态的过程。在本文中,我们描述了一种简单的双参数数据分析方法,该方法揭示了原本看似混乱的地震活动性中的隐藏规律。其中一个参数与大地震发生前地壳应变硬化物理过程产生的地震平静机制有关。我们观察到加利福尼亚州与大地震相关的地震周期,这与长期以来的推测类似。通过使用接收者操作特征技能得分形式的机器学习,可以优化由这个状态变量时间序列揭示的地震危险性估计。这里将ROC技能用作监督学习模式下的损失函数。我们的分析在以洛杉矶为中心的5°×5°经纬度区域内进行,在之前的论文中我们曾使用更复杂的方法在该区域构建类似的时间序列(Rundle & Donnellan,2020,https://doi.org/10.1029/2020EA001097;Rundle,Donnellan等人,2021,https://doi.org/10.1029/2021EA001757;Rundle,Stein等人,2021,https://doi.org/10.1088/1361-6633/abf893)。在这里我们表明,不仅状态变量时间序列具有预测技能,相关的空间概率密度也具有技能。此外,使用标准的ROC和精确率(PPV)指标可以以简单、直接和严格的方式定义当前地震危险性的概率。