Keilwerth Martin, Mao Weiqing, Jannuzzi Sergio A V, Grunwald Liam, Heinemann Frank W, Scheurer Andreas, Sutter Jörg, DeBeer Serena, Munz Dominik, Meyer Karsten
Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany.
Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany.
J Am Chem Soc. 2023 Jan 18;145(2):873-887. doi: 10.1021/jacs.2c09072. Epub 2022 Dec 30.
As key intermediates in metal-catalyzed nitrogen-transfer chemistry, terminal imido complexes of iron have attracted significant attention for a long time. In search of versatile model compounds, the recently developed second-generation -anchored -NHC chelating ligand -[2-(3-mesityl-idazole-2-ylidene)-ethyl]amie (TIMMN) was utilized to synthesize and compare two series of mid- to high-valent iron alkyl imido complexes, including a reactive Fe(V) adamantyl imido intermediate en route to an isolable Fe(V) nitrido complex. The chemistry toward the iron adamantyl imides was achieved by reacting the Fe(I) precursor [(TIMMN)Fe(N)] () with 1-adamantyl azide to yield the corresponding trivalent iron imide. Stepwise chemical reduction and oxidation lead to the isostructural series of low-spin [(TIMMN)Fe(NAd)] (-) in oxidation states II to V. The Fe(V) imide [(TIMMN)Fe(NAd)] () is unstable under ambient conditions and converts to the air-stable nitride [(TIMMN)Fe(N)] () via N-C bond cleavage. The stability of the pentavalent imide can be increased by derivatizing the nitride [(TIMMN)Fe(N)] () with an ethyl group using the triethyloxonium salt EtOPF. This gives access to the analogous series of ethyl imides [(TIMMN)Fe(NEt)] (-), including the stable Fe(V) ethyl imide. Iron imido complexes exist in a manifold of different electronic structures, ultimately controlling their diverse reactivities. Accordingly, these complexes were characterized by single-crystal X-ray diffraction analyses, SQUID magnetization, and electrochemical methods, as well as Fe Mössbauer, IR vibrational, UV/vis electronic absorption, multinuclear NMR, X-band EPR, and X-ray absorption spectroscopy. Our studies are complemented with quantum chemical calculations, thus providing further insight into the electronic structures of all complexes.
作为金属催化氮转移化学中的关键中间体,铁的末端亚氨基配合物长期以来一直备受关注。为了寻找通用的模型化合物,最近开发的第二代 - 锚定 -NHC 螯合配体 -[2-(3-均三甲苯基 - 咪唑 -2- 亚基)-乙基]胺 (TIMMN) 被用于合成和比较两个系列的中高价铁烷基亚氨基配合物,包括在通往可分离的 Fe(V) 氮化物配合物的过程中的反应性 Fe(V) 金刚烷基亚氨基中间体。通过使 Fe(I) 前体 [(TIMMN)Fe(N)] () 与 1-金刚烷基叠氮化物反应生成相应的三价铁亚胺,实现了对铁金刚烷基酰亚胺的化学研究。逐步化学还原和氧化导致氧化态为 II 至 V 的低自旋 [(TIMMN)Fe(NAd)] (-) 的同构系列。Fe(V) 亚胺 [(TIMMN)Fe(NAd)] () 在环境条件下不稳定,并通过 N-C 键裂解转化为空气稳定的氮化物 [(TIMMN)Fe(N)] ()。使用三乙氧基氧鎓盐 EtOPF 用乙基衍生化氮化物 [(TIMMN)Fe(N)] () 可以提高五价亚胺的稳定性。这使得能够获得类似系列的乙基亚胺 [(TIMMN)Fe(NEt)] (-),包括稳定的 Fe(V) 乙基亚胺。铁亚氨基配合物以多种不同的电子结构存在,最终控制它们的多种反应性。因此,这些配合物通过单晶 X 射线衍射分析、SQUID 磁化和电化学方法以及 Fe Mössbauer、IR 振动、UV/vis 电子吸收、多核 NMR、X 波段 EPR 和 X 射线吸收光谱进行表征。我们的研究辅以量子化学计算,从而进一步深入了解所有配合物的电子结构。