Suppr超能文献

基于通路分析的计算 ncRNA 转录组参与度的算法。

A pathway analysis-based algorithm for calculating the participation degree of ncRNA in transcriptome.

机构信息

Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.

Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China.

出版信息

Sci Rep. 2022 Dec 31;12(1):22654. doi: 10.1038/s41598-022-27178-8.

Abstract

After sequencing, it is common to screen ncRNA according to expression differences. But this may lose a lot of valuable information and there is currently no indicator to characterize the regulatory function and participation degree of ncRNA on transcriptome. Based on existing pathway enrichment methods, we developed a new algorithm to calculating the participation degree of ncRNA in transcriptome (PDNT). Here we analyzed multiple data sets, and differentially expressed genes (DEGs) were used for pathway enrichment analysis. The PDNT algorithm was used to calculate the Contribution value (C value) of each ncRNA based on its target genes and the pathways they participates in. The results showed that compared with ncRNAs screened by log2 fold change (FC) and p-value, those screened by C value regulated more DEGs in IPA canonical pathways, and their target DEGs were more concentrated in the core region of the protein-protein interaction (PPI) network. The ranking of disease critical ncRNAs increased integrally after sorting with C value. Collectively, we found that the PDNT algorithm provides a measure from another view compared with the log2FC and p-value and it may provide more clues to effectively evaluate ncRNA.

摘要

测序后,通常根据表达差异筛选 ncRNA。但这可能会丢失大量有价值的信息,目前还没有指标来描述 ncRNA 对转录组的调控功能和参与程度。基于现有的通路富集方法,我们开发了一种新的算法来计算 ncRNA 对转录组的参与度(PDNT)。在这里,我们分析了多个数据集,并使用差异表达基因(DEGs)进行通路富集分析。根据其靶基因及其参与的通路,PDNT 算法计算每个 ncRNA 的贡献值(C 值)。结果表明,与通过 log2 倍变化(FC)和 p 值筛选的 ncRNAs 相比,通过 C 值筛选的 ncRNAs 调节 IPA 经典通路中更多的 DEGs,其靶标 DEGs 更集中于蛋白质-蛋白质相互作用(PPI)网络的核心区域。用 C 值排序后,疾病关键 ncRNAs 的整体排名整体上升。总的来说,我们发现 PDNT 算法与 log2FC 和 p 值相比提供了另一种视角的衡量标准,它可能为有效评估 ncRNA 提供更多线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404c/9805457/797e93f29c78/41598_2022_27178_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验