文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

TRIM22 介导的 DENV-2 感染 HUVECs 后,通过激活 AMPK/ERK/mTOR 信号通路诱导自噬的机制。

Mechanism of autophagy induced by activation of the AMPK/ERK/mTOR signaling pathway after TRIM22-mediated DENV-2 infection of HUVECs.

机构信息

Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, China.

Department of Immunology, Guizhou Medical University, Guiyang, China.

出版信息

Virol J. 2022 Dec 31;19(1):228. doi: 10.1186/s12985-022-01932-w.


DOI:10.1186/s12985-022-01932-w
PMID:36587218
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9805691/
Abstract

BACKGROUND: Dengue virus type 2 (DENV-2) was used to infect primary human umbilical vein endothelial cells (HUVECs) to examine autophagy induced by activation of the adenosine monophosphate-activated protein kinase (AMPK)/extracellular signal-regulated kinase (ERK)/mammalian target of rapamycin (mTOR) signaling pathway following tripartite motif-containing 22 (TRIM22)-mediated DENV-2 infection to further reveal the underlying pathogenic mechanism of DENV-2 infection. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to screen putative interference targets of TRIM22 and determine the knockdown efficiency. The effect of TRIM22 knockdown on HUVEC proliferation was determined using the CCK8 assay. Following TRIM22 knockdown, transmission electron microscopy (TEM) was used to determine the ultrastructure of HUVEC autophagosomes and expression of HUVEC autophagy and AMPK pathway-related genes were measured by qRT-PCR. Moreover, HUVEC autophagy and AMPK pathway-related protein expression levels were determined by western blot analysis. Cell cycle and apoptosis were assessed by flow cytometry (FCM) and the autophagosome structure of the HUVECs was observed by TEM. RESULTS: Western blot results indicated that TRIM22 protein expression levels increased significantly 36 h after DENV-2 infection, which was consistent with the proteomics prediction. The CCK8 assay revealed that HUVEC proliferation was reduced following TRIM22 knockdown (P < 0.001). The TEM results indicated that HUVEC autolysosomes increased and autophagy was inhibited after TRIM22 knockdown. The qRT-PCR results revealed that after TRIM22 knockdown, the expression levels of antithymocyte globulin 7 (ATG7), antithymocyte globulin 5 (ATG5), Beclin1, ERK, and mTOR genes decreased (P < 0.01); however, the expression of AMPK genes (P < 0.05) and P62 genes (P < 0.001) increased. FCM revealed that following TRIM22 knockdown, the percentage of HUVECs in the G2 phase increased (P < 0.001) along with cell apoptosis. The effect of TRIM22 overexpression on HUVEC autophagy induced by DENV-2 infection and AMPK pathways decreased after adding an autophagy inhibitor. CONCLUSIONS: In HUVECs, TRIM22 protein positively regulates autophagy and may affect autophagy through the AMPK/ERK/mTOR signaling pathway. Autophagy is induced by activation of the AMPK/ERK/mTOR signaling pathway following TRIM22-mediated DENV-2 infection of HUVECs.

摘要

背景:登革病毒 2 型(DENV-2)用于感染原代人脐静脉内皮细胞(HUVEC),以检测三肽基含 22 (TRIM22)介导的 DENV-2 感染后激活的腺苷一磷酸激活的蛋白激酶(AMPK)/细胞外信号调节激酶(ERK)/哺乳动物雷帕霉素靶蛋白(mTOR)信号通路诱导的自噬,以进一步揭示 DENV-2 感染的潜在发病机制。

方法:使用定量实时聚合酶链反应(qRT-PCR)筛选 TRIM22 的潜在干扰靶点,并确定敲低效率。使用 CCK8 测定法确定 TRIM22 敲低对 HUVEC 增殖的影响。在 TRIM22 敲低后,使用透射电子显微镜(TEM)确定 HUVEC 自噬体的超微结构,并通过 qRT-PCR 测量 HUVEC 自噬和 AMPK 通路相关基因的表达。此外,通过 Western blot 分析测定 HUVEC 自噬和 AMPK 通路相关蛋白的表达水平。通过流式细胞术(FCM)评估细胞周期和细胞凋亡,并通过 TEM 观察 HUVEC 自噬体的结构。

结果:Western blot 结果表明,DENV-2 感染后 36 小时 TRIM22 蛋白表达水平显著增加,与蛋白质组学预测一致。CCK8 测定显示,TRIM22 敲低后 HUVEC 增殖减少(P < 0.001)。TEM 结果表明,TRIM22 敲低后 HUVEC 自溶体增加,自噬受到抑制。qRT-PCR 结果显示,TRIM22 敲低后,抗胸腺细胞球蛋白 7(ATG7)、抗胸腺细胞球蛋白 5(ATG5)、Beclin1、ERK 和 mTOR 基因的表达水平降低(P < 0.01);然而,AMPK 基因的表达(P < 0.05)和 P62 基因的表达(P < 0.001)增加。FCM 显示,TRIM22 敲低后,HUVEC 进入 G2 期的百分比增加(P < 0.001),同时细胞凋亡增加。加入自噬抑制剂后,TRIM22 过表达对 DENV-2 感染和 AMPK 通路诱导的 HUVEC 自噬的影响降低。

结论:在 HUVEC 中,TRIM22 蛋白正向调节自噬,并且可能通过 AMPK/ERK/mTOR 信号通路影响自噬。TRIM22 介导的 DENV-2 感染 HUVEC 后,通过激活 AMPK/ERK/mTOR 信号通路诱导自噬。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/094e5f9af7e4/12985_2022_1932_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/371b7ff14643/12985_2022_1932_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/8d59104d8798/12985_2022_1932_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/b08c673d246f/12985_2022_1932_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/69581b93efbd/12985_2022_1932_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/887f7c18dc09/12985_2022_1932_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/e1ba79b8bf38/12985_2022_1932_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/d3f52d565ef8/12985_2022_1932_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/7836cc02ba75/12985_2022_1932_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/c59d300d3603/12985_2022_1932_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/c24f28d2021b/12985_2022_1932_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/7f61944a2af7/12985_2022_1932_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/2ab4986aa256/12985_2022_1932_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/1636684fd0f5/12985_2022_1932_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/a2e709a82943/12985_2022_1932_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/22c9a29a3f46/12985_2022_1932_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/886d266cce3c/12985_2022_1932_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/dd2e41abcb3b/12985_2022_1932_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/094e5f9af7e4/12985_2022_1932_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/371b7ff14643/12985_2022_1932_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/8d59104d8798/12985_2022_1932_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/b08c673d246f/12985_2022_1932_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/69581b93efbd/12985_2022_1932_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/887f7c18dc09/12985_2022_1932_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/e1ba79b8bf38/12985_2022_1932_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/d3f52d565ef8/12985_2022_1932_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/7836cc02ba75/12985_2022_1932_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/c59d300d3603/12985_2022_1932_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/c24f28d2021b/12985_2022_1932_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/7f61944a2af7/12985_2022_1932_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/2ab4986aa256/12985_2022_1932_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/1636684fd0f5/12985_2022_1932_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/a2e709a82943/12985_2022_1932_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/22c9a29a3f46/12985_2022_1932_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/886d266cce3c/12985_2022_1932_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/dd2e41abcb3b/12985_2022_1932_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec4/9805691/094e5f9af7e4/12985_2022_1932_Fig18_HTML.jpg

相似文献

[1]
Mechanism of autophagy induced by activation of the AMPK/ERK/mTOR signaling pathway after TRIM22-mediated DENV-2 infection of HUVECs.

Virol J. 2022-12-31

[2]
TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling.

Redox Biol. 2022-7

[3]
TRIM22 actives PI3K/Akt/mTOR pathway to promote psoriasis through enhancing cell proliferation and inflammation and inhibiting autophagy.

Cutan Ocul Toxicol. 2022-12

[4]
DENV-2 NS1 promotes AMPK-LKB1 interaction to activate AMPK/ERK/mTOR signaling pathway to induce autophagy.

Virol J. 2023-10-11

[5]
Mechanisms of mTOR and Autophagy in Human Endothelial Cell Infected with Dengue Virus-2.

Viral Immunol. 2020

[6]
Activating autophagy and ferroptosis of 3‑Chloropropane‑1,2‑diol induces injury of human umbilical vein endothelial cells via AMPK/mTOR/ULK1.

Mol Med Rep. 2023-3

[7]
Intermittent hypoxia-induced autophagy via AMPK/mTOR signaling pathway attenuates endothelial apoptosis and dysfunction in vitro.

Sleep Breath. 2021-12

[8]
Induction of autophagy by salidroside through the AMPK-mTOR pathway protects vascular endothelial cells from oxidative stress-induced apoptosis.

Mol Cell Biochem. 2017-1

[9]
TRIM22 knockdown suppresses chronic myeloid leukemia via inhibiting PI3K/Akt/mTOR signaling pathway.

Cell Biol Int. 2018-6-20

[10]
[Effect of electroacupuncture on hepatocyte autophagy and oxidative stress in SAMP8 mice by regulating AMPK/mTOR/ULK1 signaling pathway].

Zhen Ci Yan Jiu. 2022-1-25

引用本文的文献

[1]
TRIM22 promotes glioblastoma development by ubiquitinating Bcl-2.

Mol Cell Oncol. 2025-6-18

[2]
Exploiting host kinases to combat dengue virus infection and disease.

Antiviral Res. 2025-5-8

[3]
Rice stripe mosaic virus M protein antagonizes G-protein-induced antiviral autophagy in insect vectors.

PLoS Pathog. 2025-4-29

[4]
Orthoflavivirus infection and the mTOR signaling pathway.

Front Microbiol. 2025-4-9

[5]
AMPK activation by hepatitis E virus infection inhibits viral replication through attenuation of autophagosomes and promotion of innate immunity.

Cell Mol Life Sci. 2025-3-13

[6]
Duck Tembusu virus induced mitophagy in vacuolate spermatogenic cells is mediated by PINK1-Parkin pathway.

Poult Sci. 2025-2

[7]
Multiple receptor tyrosine kinases regulate dengue infection of hepatocytes.

Front Cell Infect Microbiol. 2024

[8]
Retinoblastoma-associated protein is important for TRIM24-mediated activation of the mTOR signaling pathway through DUSP2 action in prostate cancer.

Cell Death Differ. 2024-5

[9]
Identification of Differentially Expressed mRNAs and miRNAs and Related Regulatory Networks in Cumulus Oophorus Complexes Associated with Fertilization.

Reprod Sci. 2024-5

[10]
Prevalence and genotype distribution of human papillomavirus infection among female outpatients in Northeast China: a population-based survey of 110,927 women.

Arch Gynecol Obstet. 2023-7

本文引用的文献

[1]
Mfn2-mediated mitochondrial fusion promotes autophagy and suppresses ovarian cancer progression by reducing ROS through AMPK/mTOR/ERK signaling.

Cell Mol Life Sci. 2022-10-29

[2]
The Interplay between Autophagy and Virus Pathogenesis-The Significance of Autophagy in Viral Hepatitis and Viral Hemorrhagic Fevers.

Cells. 2022-3-3

[3]
FOXO3/TRIM22 axis abated the antitumor effect of gemcitabine in non-small cell lung cancer via autophagy induction.

Transl Cancer Res. 2020-2

[4]
Clearance or Hijack: Universal Interplay Mechanisms Between Viruses and Host Autophagy From Plants to Animals.

Front Cell Infect Microbiol. 2021

[5]
Immunocompetent Mice Infected by Two Lineages of Dengue Virus Type 2: Observations on the Pathology of the Lung, Heart and Skeletal Muscle.

Microorganisms. 2021-12-8

[6]
The Autophagosomes Containing Dengue Virus Proteins and Full-Length Genomic RNA Are Infectious.

Viruses. 2021-10-9

[7]
Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses.

Viruses. 2021-9-30

[8]
Autophagy in metabolic disease and ageing.

Nat Rev Endocrinol. 2021-11

[9]
TRIM22. A Multitasking Antiviral Factor.

Cells. 2021-7-23

[10]
Evolution, heterogeneity and global dispersal of cosmopolitan genotype of Dengue virus type 2.

Sci Rep. 2021-6-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索