Bos Tijmen S, Desport Jessica S, Buijtenhuijs Ab, Purmova Jindra, Karlson Leif, Pirok Bob W J, Schoenmakers Peter J, Somsen Govert W
Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands.
Van 't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands.
J Chromatogr A. 2023 Jan 25;1689:463758. doi: 10.1016/j.chroma.2022.463758. Epub 2022 Dec 28.
Cellulose ethers (CEs) are semi-synthetic polymers produced by derivatization of natural cellulose, yielding highly substituted products such as ethyl hydroxyethyl cellulose (EHEC) or methyl ethyl hydroxyethyl cellulose (MEHEC). CEs are commonly applied as pharmaceutical excipients and thickening agents in paints and drymix mortars. CE properties, such as high viscosity in solution, solubility, and bio-stability are of high interest to achieve required product qualities, which may be strongly affected by the substitution pattern obtained after derivatization. The average and molar degree of substitution often cannot explain functional differences observed among CE batches, and more in-depth analysis is needed. In this work, a new method was developed for the comprehensive mapping of the substitution degree and composition of β-glucose monomers of CE samples. To this end, CEs were acid-hydrolyzed and then analyzed by gradient reversed-phase liquid chromatography-mass spectrometry (LC-MS) using an acid-stable LC column and time-of-flight (TOF) mass spectrometer. LC-MS provided monomer resolution based on ethylene oxide, hydroxyl, and terminating methyl/ethyl content, allowing the assignment of detailed compositional distributions. An essential further distinction of constitutional isomer distributions was achieved using an in-house developed probability-based deconvolution algorithm. Aided by differential heat maps for visualization and straightforward interpretation of the measured LC-MS data, compositional variation between bio-stable and non-bio-stable CEs could be identified using this new approach. Moreover, it disclosed unexpected methylations in EHEC samples. Overall, the obtained molecular information on relevant CE samples demonstrated the method's potential for the study of CE structure-property relationships.
纤维素醚(CEs)是通过天然纤维素衍生化生产的半合成聚合物,可生成高度取代的产物,如乙基羟乙基纤维素(EHEC)或甲基乙基羟乙基纤维素(MEHEC)。CEs通常用作药物辅料以及油漆和干粉砂浆中的增稠剂。CEs的特性,如溶液中的高粘度、溶解性和生物稳定性,对于实现所需的产品质量至关重要,而这些特性可能会受到衍生化后获得的取代模式的强烈影响。取代度的平均值和摩尔值往往无法解释CE批次之间观察到的功能差异,因此需要更深入的分析。在这项工作中,开发了一种新方法,用于全面绘制CE样品中β-葡萄糖单体的取代度和组成。为此,将CEs进行酸水解,然后使用耐酸液相色谱柱和飞行时间(TOF)质谱仪通过梯度反相液相色谱-质谱联用(LC-MS)进行分析。LC-MS基于环氧乙烷、羟基和末端甲基/乙基含量提供单体分辨率,从而能够确定详细的组成分布。使用自行开发的基于概率的去卷积算法,实现了对结构异构体分布的进一步重要区分。借助差分热图对测量的LC-MS数据进行可视化和直观解释,利用这种新方法可以识别生物稳定和非生物稳定CEs之间的组成差异。此外,该方法还揭示了EHEC样品中意外的甲基化现象。总体而言,所获得的有关CE样品的分子信息证明了该方法在研究CE结构-性质关系方面的潜力。