Nano-Sensors and Detectors Lab., and Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
Institut für Experimentelle und Angewandte Physik, Kiel University, 24118, Kiel, Germany.
Sci Rep. 2023 Jan 2;13(1):54. doi: 10.1038/s41598-022-27109-7.
Here, we numerically prove that light with linear polarization can be coupled to surface plasmon polaritons at an elliptical hole perforated in a gold layer to generate plasmonic vortex (PV). Benefiting from the smooth variation of the minor to major ellipse axes, a gradual variation in the phase profile of the generated PV is achieved. Regarding this, three types of independent arrays of elliptical holes are presented, which can produce uniform and high quality PVs with different topological charges at the center of the arrays. The first array can produce PV with topological charges of + 1 and - 1, depending on the polarization orientation of the incident light. In the second one, the topological charge of the PV can be switched between 0 and + 2, by switching the polarization direction of the incident light. In the third array, a robust PV with topological charge of + 1 is generated independent of possible tolerances in the polarization orientation. In order to use the generated PVs for plasmonic tweezing application, there are side fringes around the central vortex of the arrays that should be eliminated. To produce a single vortex, we propose metal-insulator-metal (MIM) structures, screening excessive fringes and allowing the central PVs to leak out. It is also demonstrated by simulation that target particles, such as gold and polystyrene spheres of subwavelength dimensions, can be efficiently manipulated by our MIM designs, suitable for different applications including local mixing, and applying switchable torque or force to target particles to explore their complete elastic characteristics.
在这里,我们通过数值证明,线性偏振光可以与在金层中穿孔的椭圆孔中的表面等离激元极化激元耦合,从而产生等离子体涡旋(PV)。得益于短轴到长轴的逐渐变化,生成的 PV 的相位分布可以实现逐渐变化。在这方面,提出了三种独立的椭圆孔阵列,它们可以在阵列中心产生具有不同拓扑电荷的均匀和高质量的 PV。第一个阵列可以产生拓扑电荷为+1 和-1 的 PV,这取决于入射光的偏振方向。在第二个阵列中,通过切换入射光的偏振方向,可以在 0 和+2 之间切换 PV 的拓扑电荷。在第三个阵列中,无论偏振方向可能存在的公差如何,都可以产生具有拓扑电荷+1 的稳健 PV。为了将生成的 PV 用于等离子体镊子应用,阵列中心的涡旋周围存在侧条纹,需要将其消除。为了产生单个涡旋,我们提出了金属-绝缘体-金属(MIM)结构,屏蔽了过多的条纹,并允许中央 PV 泄漏出来。通过模拟还证明了,对于亚波长尺寸的金和聚苯乙烯球体等目标粒子,可以通过我们的 MIM 设计有效地进行操作,适用于包括局部混合在内的不同应用,以及施加可切换的扭矩或力到目标粒子,以探索其完整的弹性特性。