Suppr超能文献

越南高血压和血脂异常治疗的依从性及其对心血管疾病控制的影响:一项半系统评价。

Adherence to hypertension and dyslipidemia treatment and its implication on control of cardiovascular disease in Vietnam: A semi-systematic review.

机构信息

Vietnam Heart Institute, Bach Mai Hospital, 78 Giai Phong, and Hanoi Medical University, Hanoi, Vietnam.

Vietnam Heart Institutes, Bach Mai Hospital, Hanoi, Vietnam.

出版信息

Medicine (Baltimore). 2022 Dec 23;101(51):e32137. doi: 10.1097/MD.0000000000032137.

Abstract

BACKGROUND

To understand the prevalent issues and challenges in the provision of care for dyslipidemia and hypertension in Vietnamese adults, quantification of patient journey stages (awareness, screening, diagnosis, treatment, adherence, and control) was performed in this semi-systematic review.

METHODS

The EMBASE and MEDLINE databases were searched for English articles published between 2010 and 2019. Thesis abstracts, letters to the editor, editorials, case studies, and studies on patient subgroups or nationally unrepresentative studies, were excluded. Articles from Google, the Incidence and Prevalence Database, the World Health Organization, Vietnam's Ministry of Health, and those suggested by the authors were also included. The last search was run on December 10, 2019 for dyslipidemia and hypertension.

RESULTS

A reviewer independently screened 586 retrievals for dyslipidemia and 177 retrievals for hypertension, and extracted data from 2 articles on dyslipidemia and 6 articles on hypertension that were included in the final synthesis.

CONCLUSION

The data generated in this review will help overcome these issues and barriers to patient care in populations with these 2 conditions.

摘要

背景

为了了解越南成年人在血脂异常和高血压护理方面存在的普遍问题和挑战,我们对半系统评价中的患者就诊阶段(意识、筛查、诊断、治疗、依从性和控制)进行了量化。

方法

我们在 EMBASE 和 MEDLINE 数据库中搜索了 2010 年至 2019 年期间发表的英文文章。排除了论文摘要、给编辑的信、社论、病例研究以及针对患者亚组或全国代表性不足的研究的文章。还包括来自 Google、发病率和患病率数据库、世界卫生组织、越南卫生部以及作者建议的文章。最后一次搜索是在 2019 年 12 月 10 日针对血脂异常和高血压进行的。

结果

一位评审员独立筛选了 586 篇血脂异常和 177 篇高血压的检索结果,从 2 篇血脂异常和 6 篇高血压的文章中提取了数据,并将这些文章纳入最终综合分析。

结论

本综述中生成的数据将有助于克服这两种疾病患者护理中存在的这些问题和障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3a3/9794305/d9b739e9c546/medi-101-e32137-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验