Kozlowski Allan J, Gooch Cally, Reeves Mathew J, Butzer John F
Department of Epidemiology and Biostatistics, Michigan State University - College of Human Medicine, Grand Rapids, MI; John F. Butzer Center for Research and Innovation, Mary Free Bed Rehabilitation Hospital, Grand Rapids, MI; Division of Rehabilitation, Michigan State University - College of Human Medicine, Grand Rapids, MI.
John F. Butzer Center for Research and Innovation, Mary Free Bed Rehabilitation Hospital, Grand Rapids, MI; Department of Biostatistics, Grand Valley State University, Grand Rapids, MI.
Arch Phys Med Rehabil. 2023 Apr;104(4):580-589. doi: 10.1016/j.apmr.2022.08.980. Epub 2022 Dec 31.
To demonstrate a proof-of-concept for prognostic models of post-stroke recovery on activity level outcomes.
Longitudinal cohort with repeated measures from acute care, inpatient rehabilitation, and post-discharge follow-up to 6 months post-stroke.
Enrollment from a single Midwest USA inpatient rehabilitation facility with community follow-up.
One-hundred fifteen persons recovering from stroke admitted to an acute rehabilitation facility (N=115).
Not applicable.
MAIN OUTCOME MEASURE(S): Activity Measure for Post-Acute Care Basic Mobility and Daily Activities domains administered as 6 Clicks and patient-reported short forms.
The final Basic Mobility model defined a group-averaged trajectory rising from a baseline (pseudo-intercept) T score of 35.5 (P<.001) to a plateau (asymptote) T score of 56.4 points (P<.001) at a negative exponential rate of -1.49 (P<.001). Individual baseline scores varied by age, acute care tissue plasminogen activator, and acute care length of stay. Individual plateau scores varied by walking speed, acute care tissue plasminogen activator, and lower extremity Motricity Index scores. The final Daily Activities model defined a group-averaged trajectory rising from a baseline T score of 24.5 (P<.001) to a plateau T score of 41.3 points (P<.001) at a negative exponential rate of -1.75 (P<.001). Individual baseline scores varied by acute care length of stay, and plateau scores varied by self-care, upper extremity Motricity Index, and Berg Balance Scale scores.
As a proof-of-concept, individual activity-level recovery can be predicted as patient-level trajectories generated from electronic medical record data, but models require attention to completeness and accuracy of data elements collected on a fully representative patient sample.
验证基于活动水平结果的中风后恢复预后模型的概念验证。
纵向队列研究,从急性护理、住院康复到中风后6个月的出院后随访进行重复测量。
从美国中西部一家单一的住院康复机构招募患者,并进行社区随访。
115名从急性康复机构收治的中风康复患者(N = 115)。
不适用。
急性后护理基本移动性和日常活动领域的活动测量,以6次点击和患者报告的简表形式进行。
最终的基本移动性模型定义了一个组平均轨迹,从基线(伪截距)T分数35.5(P <.001)以-1.49的负指数率(P <.001)上升到平台期(渐近线)T分数56.4分(P <.001)。个体基线分数因年龄、急性护理组织型纤溶酶原激活剂和急性护理住院时间而异。个体平台分数因步行速度、急性护理组织型纤溶酶原激活剂和下肢运动指数分数而异。最终的日常活动模型定义了一个组平均轨迹,从基线T分数24.5(P <.001)以-1.75的负指数率(P <.001)上升到平台期T分数41.3分(P <.001)。个体基线分数因急性护理住院时间而异,平台分数因自我护理、上肢运动指数和伯格平衡量表分数而异。
作为概念验证,个体活动水平恢复可以通过电子病历数据生成的患者水平轨迹进行预测,但模型需要关注在完全代表性患者样本上收集的数据元素的完整性和准确性。