Suppr超能文献

Cox 回归中的模型不确定性量化。

Model uncertainty quantification in Cox regression.

机构信息

Department of Economy and Finance, University of Castilla-La Mancha, Albacete, Spain.

Department of Statistics, Carlos III University of Madrid, Getafe, Madrid, Spain.

出版信息

Biometrics. 2023 Sep;79(3):1726-1736. doi: 10.1111/biom.13823. Epub 2023 Jan 17.

Abstract

We consider covariate selection and the ensuing model uncertainty aspects in the context of Cox regression. The perspective we take is probabilistic, and we handle it within a Bayesian framework. One of the critical elements in variable/model selection is choosing a suitable prior for model parameters. Here, we derive the so-called conventional prior approach and propose a comprehensive implementation that results in an automatic procedure. Our simulation studies and real applications show improvements over existing literature. For the sake of reproducibility but also for its intrinsic interest for practitioners, a web application requiring minimum statistical knowledge implements the proposed approach.

摘要

我们在 Cox 回归的背景下考虑协变量选择和随之而来的模型不确定性方面。我们采取的观点是概率性的,并在贝叶斯框架内处理它。变量/模型选择的关键要素之一是为模型参数选择合适的先验。在这里,我们推导出所谓的常规先验方法,并提出了一种全面的实现方法,从而得到了一种自动的方法。我们的模拟研究和实际应用表明,该方法优于现有文献。为了可重复性,也为了其对从业者的内在兴趣,一个需要最低统计知识的网络应用程序实现了所提出的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验