Institute of Computational Quantum Chemistry, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
Chemistry. 2023 Apr 3;29(19):e202203817. doi: 10.1002/chem.202203817. Epub 2023 Mar 2.
Given the extraordinary versatility in chemical reactions and applications, boron compounds have gained increasing attentions in the past two decades. One of the remarkable advances is the unprecedented preparation of unsaturated boron species. Notably, Braunschweig et al. found that the cyclic (alkyl)(amino) carbenes (CAACs) stabilized diboron molecules (CAAC) B (SR) host unpaired electrons and exist in the 90°-twisted diradical form, while other analogues, such as N-heterocyclic carbenes (NHCs), stabilized diboron molecules prefer a conventional B=B double bond. Since previous studies recognized the differences in the steric effect between CAAC and NHC carbenes, here we focused on the role of thiol substituents in (CAAC) B (SR) by gradually localizing involved electrons. The co-planarity of the thiol groups and the consequent captodative effect were found to be the culprit for the 90°-twisted diradical form of (CAAC) B (SR) . Computational analyses identified two forces contributing to the π electron movements. One is the "push" effect of lone pairs on the sulfur atoms which boosts the π electron delocalization between the BB center and CAACs. The other is the π electron delocalization within each (CAAC)B(SR) fragment where the pull effect originates from the π electron withdrawal by CAACs. There are two such independent and orthogonal push-pull channels which function mainly in individual (CAAC)B(SR) fragments. This enhanced π push-pull effect in the triplet state facilitates the electronic excitation in (CAAC) B (SR) by reducing the singlet-triplet gap.
鉴于硼化合物在化学反应和应用中具有非凡的多功能性,在过去的二十年中,它们引起了越来越多的关注。其中一项显著的进展是前所未有地制备了不饱和硼物种。值得注意的是,Braunschweig 等人发现,环状(烷基)(氨基)卡宾(CAAC)稳定的二硼分子(CAAC)B(SR)主体未成对电子,并以 90°扭曲的自由基形式存在,而其他类似物,如 N-杂环卡宾(NHC)稳定的二硼分子更喜欢传统的 B=B 双键。由于之前的研究已经认识到 CAAC 和 NHC 卡宾之间空间效应的差异,因此我们在这里专注于巯基取代基在(CAAC)B(SR)中的作用,通过逐渐定位涉及的电子。发现硫醇基团的共面性和随之而来的给电子效应是(CAAC)B(SR)形成 90°扭曲自由基形式的罪魁祸首。计算分析确定了两种力有助于π 电子运动。一种是硫原子上孤对电子的“推”效应,它促进了 BB 中心和 CAACs 之间的π 电子离域。另一种是每个(CAAC)B(SR)片段内的π 电子离域,其中 CAACs 通过π 电子的抽取产生拉电子效应。有两个这样独立和正交的推拉通道,主要在单个(CAAC)B(SR)片段中起作用。三重态中这种增强的π 推拉效应通过减小单重态-三重态能隙促进了(CAAC)B(SR)中的电子激发。