Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
J Neurochem. 2023 Apr;165(2):246-258. doi: 10.1111/jnc.15763. Epub 2023 Jan 28.
Alpha-synuclein (αS), the key protein in Parkinson's disease, is typically described as an intrinsically disordered protein. Consistent with this notion, several context-dependent folding states may coexist in neurons. Unfolded soluble monomers, helical monomers at membranes and helical multimers (soluble or at membranes) have all been reported and may be in an equilibrium with each other. We previously found that αS can be stabilized in its membrane-associated monomeric form by genetically increasing the hydrophobicity of the membrane-embedded half of the αS helix. αS amphipathic helix formation at membranes is governed by up to nine 11-amino acid repeats with the core motif KTKEGV. However, this repeat is only imperfectly conserved; for example, it consists of KAKEGV in repeat #1, KTKEQV in repeat #5, and AVVTGV in the poorly conserved repeat #6. Here we explored the effect of perfecting the αS core repeat to nine times KTKEGV ("9KV") and found by sequential protein extraction that this engineered mutant accumulates in the cytosolic phase of neural cells. Intact-cell cross-linking trapped a part of the cytosolic portion at multimeric positions (30, 60, 80, 100 kDa). Thus, compared to wild-type αS, αS 9KV seems less prone to populating the membrane-associated monomeric form. Removing the "ATVA" intervening amino-acid sequence between repeats 4 and 5 slightly increased cytosolic localization while adding "ATVA" in between all repeats 1-8 caused αS to be trapped as a monomer in membrane fractions. Our results contribute to an ongoing debate on the dynamic structure of αS, highlighting that wild-type αS is unlikely to be fully multimeric/monomeric or fully cytosolic/membrane-associated in cells, but protein engineering can create αS variants that preferentially adopt a certain state. Overall, the imperfect nature of the KTKEGV repeat motifs and the presence of ATVA in between repeats 4 and 5 seem to prevent a strong cytosolic localization of αS and thus play a major role in the protein's ability to dynamically populate cytosolic vs. membrane-associated and monomeric vs. multimeric states.
α-突触核蛋白(αS)是帕金森病的关键蛋白,通常被描述为一种无规卷曲的蛋白质。与这一概念一致的是,几种上下文相关的折叠状态可能在神经元中共存。未折叠的可溶性单体、膜上的螺旋单体和螺旋多聚体(可溶性或在膜上)都有报道,并且可能彼此处于平衡状态。我们之前发现,通过遗传增加αS 螺旋中嵌入膜的一半的疏水性,可以稳定 αS 与其膜相关的单体形式。αS 在膜上的两亲性螺旋形成受多达九个 11 个氨基酸重复的控制,核心基序为 KTKEGV。然而,这个重复并不完全保守;例如,在重复 #1 中它由 KAKEGV 组成,在重复 #5 中由 KTKEQV 组成,在保守性较差的重复 #6 中由 AVVTGV 组成。在这里,我们探索了将 αS 核心重复完美化为九次 KTKEGV(“9KV”)的效果,并通过连续蛋白提取发现,这种工程突变体在神经细胞的细胞质相中积累。完整细胞交联将细胞质部分的一部分捕获在多聚体位置(30、60、80、100 kDa)。因此,与野生型 αS 相比,αS 9KV 似乎不太容易占据膜相关的单体形式。去除重复 4 和 5 之间的“ATVA”插入氨基酸序列略微增加了细胞质定位,而在所有重复 1-8 之间添加“ATVA”则导致 αS 作为单体被捕获在膜部分。我们的结果有助于正在进行的关于 αS 动态结构的争论,强调野生型 αS 不太可能在细胞中完全是多聚体/单体或完全是细胞质/膜相关的,但蛋白质工程可以创造出优先采用某种状态的 αS 变体。总体而言,KTKEGV 重复基序的不完美性质以及重复 4 和 5 之间存在 ATVA 似乎阻止了 αS 的强烈细胞质定位,因此在蛋白质动态地占据细胞质与膜相关以及单体与多聚体状态的能力方面发挥着重要作用。