Suppr超能文献

KTKEGV 重复基序和 intervening ATVA 序列对 α-突触核蛋白可溶性和组装的影响。

The effects of KTKEGV repeat motif and intervening ATVA sequence on α-synuclein solubility and assembly.

机构信息

Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Neurochem. 2023 Apr;165(2):246-258. doi: 10.1111/jnc.15763. Epub 2023 Jan 28.

Abstract

Alpha-synuclein (αS), the key protein in Parkinson's disease, is typically described as an intrinsically disordered protein. Consistent with this notion, several context-dependent folding states may coexist in neurons. Unfolded soluble monomers, helical monomers at membranes and helical multimers (soluble or at membranes) have all been reported and may be in an equilibrium with each other. We previously found that αS can be stabilized in its membrane-associated monomeric form by genetically increasing the hydrophobicity of the membrane-embedded half of the αS helix. αS amphipathic helix formation at membranes is governed by up to nine 11-amino acid repeats with the core motif KTKEGV. However, this repeat is only imperfectly conserved; for example, it consists of KAKEGV in repeat #1, KTKEQV in repeat #5, and AVVTGV in the poorly conserved repeat #6. Here we explored the effect of perfecting the αS core repeat to nine times KTKEGV ("9KV") and found by sequential protein extraction that this engineered mutant accumulates in the cytosolic phase of neural cells. Intact-cell cross-linking trapped a part of the cytosolic portion at multimeric positions (30, 60, 80, 100 kDa). Thus, compared to wild-type αS, αS 9KV seems less prone to populating the membrane-associated monomeric form. Removing the "ATVA" intervening amino-acid sequence between repeats 4 and 5 slightly increased cytosolic localization while adding "ATVA" in between all repeats 1-8 caused αS to be trapped as a monomer in membrane fractions. Our results contribute to an ongoing debate on the dynamic structure of αS, highlighting that wild-type αS is unlikely to be fully multimeric/monomeric or fully cytosolic/membrane-associated in cells, but protein engineering can create αS variants that preferentially adopt a certain state. Overall, the imperfect nature of the KTKEGV repeat motifs and the presence of ATVA in between repeats 4 and 5 seem to prevent a strong cytosolic localization of αS and thus play a major role in the protein's ability to dynamically populate cytosolic vs. membrane-associated and monomeric vs. multimeric states.

摘要

α-突触核蛋白(αS)是帕金森病的关键蛋白,通常被描述为一种无规卷曲的蛋白质。与这一概念一致的是,几种上下文相关的折叠状态可能在神经元中共存。未折叠的可溶性单体、膜上的螺旋单体和螺旋多聚体(可溶性或在膜上)都有报道,并且可能彼此处于平衡状态。我们之前发现,通过遗传增加αS 螺旋中嵌入膜的一半的疏水性,可以稳定 αS 与其膜相关的单体形式。αS 在膜上的两亲性螺旋形成受多达九个 11 个氨基酸重复的控制,核心基序为 KTKEGV。然而,这个重复并不完全保守;例如,在重复 #1 中它由 KAKEGV 组成,在重复 #5 中由 KTKEQV 组成,在保守性较差的重复 #6 中由 AVVTGV 组成。在这里,我们探索了将 αS 核心重复完美化为九次 KTKEGV(“9KV”)的效果,并通过连续蛋白提取发现,这种工程突变体在神经细胞的细胞质相中积累。完整细胞交联将细胞质部分的一部分捕获在多聚体位置(30、60、80、100 kDa)。因此,与野生型 αS 相比,αS 9KV 似乎不太容易占据膜相关的单体形式。去除重复 4 和 5 之间的“ATVA”插入氨基酸序列略微增加了细胞质定位,而在所有重复 1-8 之间添加“ATVA”则导致 αS 作为单体被捕获在膜部分。我们的结果有助于正在进行的关于 αS 动态结构的争论,强调野生型 αS 不太可能在细胞中完全是多聚体/单体或完全是细胞质/膜相关的,但蛋白质工程可以创造出优先采用某种状态的 αS 变体。总体而言,KTKEGV 重复基序的不完美性质以及重复 4 和 5 之间存在 ATVA 似乎阻止了 αS 的强烈细胞质定位,因此在蛋白质动态地占据细胞质与膜相关以及单体与多聚体状态的能力方面发挥着重要作用。

相似文献

1
The effects of KTKEGV repeat motif and intervening ATVA sequence on α-synuclein solubility and assembly.
J Neurochem. 2023 Apr;165(2):246-258. doi: 10.1111/jnc.15763. Epub 2023 Jan 28.
2
KTKEGV repeat motifs are key mediators of normal α-synuclein tetramerization: Their mutation causes excess monomers and neurotoxicity.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9596-601. doi: 10.1073/pnas.1505953112. Epub 2015 Jul 7.
5
Pathogenic Mechanisms of Cytosolic and Membrane-Enriched α-Synuclein Converge on Fatty Acid Homeostasis.
J Neurosci. 2022 Mar 9;42(10):2116-2130. doi: 10.1523/JNEUROSCI.1881-21.2022. Epub 2022 Jan 27.
6
Cell models of lipid-rich α-synuclein aggregation validate known modifiers of α-synuclein biology and identify stearoyl-CoA desaturase.
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20760-20769. doi: 10.1073/pnas.1903216116. Epub 2019 Sep 23.
8
From a Highly Disordered to a Metastable State: Uncovering Insights of α-Synuclein.
ACS Chem Neurosci. 2018 May 16;9(5):1051-1065. doi: 10.1021/acschemneuro.7b00446. Epub 2018 Feb 26.
9
Synuclein Family Members Prevent Membrane Damage by Counteracting α-Synuclein Aggregation.
Biomolecules. 2021 Jul 21;11(8):1067. doi: 10.3390/biom11081067.
10
Studying α-Synuclein Conformation by Intact-Cell Cross-Linking.
Methods Mol Biol. 2019;1948:77-91. doi: 10.1007/978-1-4939-9124-2_8.

本文引用的文献

1
Temperature is a key determinant of alpha- and beta-synuclein membrane interactions in neurons.
J Biol Chem. 2021 Jan-Jun;296:100271. doi: 10.1016/j.jbc.2021.100271. Epub 2021 Jan 9.
2
Cell models of lipid-rich α-synuclein aggregation validate known modifiers of α-synuclein biology and identify stearoyl-CoA desaturase.
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20760-20769. doi: 10.1073/pnas.1903216116. Epub 2019 Sep 23.
4
Studying α-Synuclein Conformation by Intact-Cell Cross-Linking.
Methods Mol Biol. 2019;1948:77-91. doi: 10.1007/978-1-4939-9124-2_8.
5
Lipidomic Analysis of α-Synuclein Neurotoxicity Identifies Stearoyl CoA Desaturase as a Target for Parkinson Treatment.
Mol Cell. 2019 Mar 7;73(5):1001-1014.e8. doi: 10.1016/j.molcel.2018.11.028. Epub 2018 Dec 4.
6
Inhibiting Stearoyl-CoA Desaturase Ameliorates α-Synuclein Cytotoxicity.
Cell Rep. 2018 Dec 4;25(10):2742-2754.e31. doi: 10.1016/j.celrep.2018.11.028.
7
Rationally Designed Variants of α-Synuclein Illuminate Its Structural Properties in Health and Disease.
Front Neurosci. 2018 Sep 25;12:623. doi: 10.3389/fnins.2018.00623. eCollection 2018.
8
Refolding of helical soluble α-synuclein through transient interaction with lipid interfaces.
FEBS Lett. 2018 May;592(9):1464-1472. doi: 10.1002/1873-3468.13047. Epub 2018 Apr 20.
9
GBA1 deficiency negatively affects physiological α-synuclein tetramers and related multimers.
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):798-803. doi: 10.1073/pnas.1700465115. Epub 2018 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验