Suppr超能文献

使用聚乙二醇/磷酸盐混合溶液观察相分离多相流以及红细胞在流系统中的两相间分配。

Observation of the phase-separation multiphase flow using a polyethylene glycol/phosphate mixed solutions and the aqueous two-phase distribution of red blood cells in the flow system.

机构信息

Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan.

Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-Machi, Tosu, Saga, 841-0052, Japan.

出版信息

Anal Sci. 2023 Apr;39(4):537-546. doi: 10.1007/s44211-022-00259-4. Epub 2023 Jan 11.

Abstract

Phase-separation multiphase flow at a liquid-liquid interface was successfully formed in an aqueous two-phase system of polyethylene glycol/phosphate mixed solutions when fed into a microchannel (100 µm wide and 40 µm deep) on a microchip and a fused-silica capillary tube (100 µm ID). As one example, tube radial distribution flow (annular flow) was observed when 10.0 wt% polyethylene glycol 6000 and 8.5 wt% dipotassium hydrogen phosphate aqueous solution containing 1.0 mM Rhodamine B was fed at 40 ℃, recorded by bright field microscopy. It exhibited a dipotassium hydrogen phosphate-rich inner phase and polyethylene glycol-rich outer phase. Effects of conditions including composition, flow rate, viscosity, and contact angle on tube radial distribution flow were analyzed. It was found out that although the viscosity of PEG-rich solution was much higher than that of phosphate-rich one, the phase configuration in tube radial distribution flow did not necessarily obey the viscous dissipation law in untreated microchannel and capillary tube, as well as for all the types of PEG/phosphate mixed solution the PEG-rich solution occupied the outer phase near the ODS-treated inner wall of both microchannel and capillary tube against the law. To assess the use of microfluidic flow in applications, we examined the distribution of red blood cells in the inner and outer phases fed into double capillary tubes with different inner diameters. Cell distribution was found to concentrate in the inner (dipotassium hydrogen phosphate-rich) phase compared to the outer (polyethylene glycol-rich) phase at a ratio of 1.8.

摘要

在微芯片上的微通道(100µm 宽,40µm 深)和熔融石英毛细管(100µm ID)中进料时,聚乙二醇/磷酸盐混合溶液的水包两相系统中成功形成了液-液界面相分离多相流。例如,当以 40℃进料含有 1.0mM 罗丹明 B 的 10.0wt%聚乙二醇 6000 和 8.5wt%磷酸二氢钾水溶液时,观察到管径向分布流(环隙流),通过明场显微镜记录。它显示出富含磷酸二氢钾的内相和富含聚乙二醇的外相。分析了包括组成、流速、粘度和接触角在内的条件对管径向分布流的影响。结果发现,尽管聚乙二醇富相溶液的粘度远高于磷酸富相溶液,但管径向分布流中的相结构不一定遵循未处理微通道和毛细管中的粘性耗散定律,以及对于所有类型的聚乙二醇/磷酸盐混合溶液,聚乙二醇富相溶液都占据了外相靠近 ODS 处理的微通道和毛细管的内表面,这与规律相反。为了评估微流控在应用中的用途,我们检查了将红细胞分配到不同内径的双毛细管中的内相和外相。与外相(富含聚乙二醇)相比,细胞分布在富含磷酸二氢钾的内相(内相)中集中,比例为 1.8。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验