Suppr超能文献

胶体杂化量子点表面化学计量控制用于高性能光电化学制氢。

Surface Stoichiometry Control of Colloidal Heterostructured Quantum Dots for High-Performance Photoelectrochemical Hydrogen Generation.

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China.

State Key Laboratory of Bio-Fibers and Eco-Textiles & College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, P. R. China.

出版信息

Small. 2023 Apr;19(15):e2206316. doi: 10.1002/smll.202206316. Epub 2023 Jan 15.

Abstract

Manipulating the separation and transfer behaviors of charges has long been pursued for promoting the photoelectrochemical (PEC) hydrogen generation based on II-VI quantum dot (QDs), but remains challenging due to the lack of effective strategies. Herein, a facile strategy is reported to regulate the recombination and transfer of interfacial charges through tuning the surface stoichiometry of heterostructured QDs. Using this method, it is demonstrated that the PEC cells based on CdSe-(Se S ) -(CdS) core/shell QDs with a proper S /Cd ratio exhibits a remarkably improved photocurrent density (≈18.4 mA cm under one sun illumination), superior to the PEC cells based on QDs with Cd-rich or excessive S-rich surface. In-depth electrochemical and spectroscopic characterizations reveal the critical role (hole traps) of surface S atoms in suppressing the recombination of photogenerated charges, and further attribute the inferior performance of excessive S-rich QDs to the impeded charge transfer from QDs to TiO and electrolyte. This work puts forward a simple surface engineering strategy for improving the performance of QDs PEC cells, providing an efficient method to guide the surface design of QDs for their applications in other optoelectronic devices.

摘要

长期以来,人们一直致力于通过调控 II-VI 量子点(QDs)的光电化学(PEC)制氢中的电荷分离和转移行为来提高其性能,但由于缺乏有效的策略,这一目标一直难以实现。在此,我们报道了一种通过调节异质结构 QDs 的表面化学计量来调控界面电荷复合和转移的简便策略。通过这种方法,我们证明了具有适当 S/Cd 比的 CdSe-(Se S ) -(CdS)核/壳 QDs 的 PEC 电池表现出显著提高的光电流密度(≈18.4 mA cm -2 在 1 个太阳光照下),优于具有富 Cd 或过量富 S 表面的 QDs 的 PEC 电池。深入的电化学和光谱表征揭示了表面 S 原子在抑制光生电荷复合方面的关键作用(空穴陷阱),并进一步将过量富 S 的 QDs 性能较差归因于从 QDs 到 TiO 2 和电解质的电荷转移受阻。这项工作提出了一种提高 QDs PEC 电池性能的简单表面工程策略,为指导 QDs 的表面设计以应用于其他光电设备提供了一种有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验