Macromolecular Chemistry - Smart Membranes, Technische Universität Darmstadt, 64287, Darmstadt, Germany.
Small. 2023 Apr;19(16):e2207762. doi: 10.1002/smll.202207762. Epub 2023 Jan 17.
For high throughput applications, e.g., in the context of sensing especially when being combined with machine learning, large sample numbers in acceptable production time are required. This needs automated synthesis and material functionalization concepts ideally combined with high precision. To automate sensing relevant mesopore polymer functionalization while being highly precise in polymer placement, polymer amount control, and polymer sequence design, a process for polymer writing in mesoporous silica films with pore diameter in the range of 13 nm is developed. Mesoporous films are functionalized with different polymers in adjustable polymer amount including block-copolymer functionalization in an automated process using a visible-light induced, controlled photo electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization. While transferring this PET-RAFT to a commercially available microscope, direct, automated laser writing of three different polymers, as well as polymer re-initiation is demonstrated. Using a laser diameter of ≈72 µm, significantly smaller polymer spots of ≈7 µm in diameter are realized. Micrometerscale resolved polymer images including block-copolymers are written into mesoporous layers covering millimeter scale areas requiring a writing time in the range of one second per polymer spot.
对于高通量应用,例如在感测领域(特别是与机器学习结合使用时),需要在可接受的生产时间内处理大量样本。这需要自动化合成和材料功能化概念,理想情况下与高精度相结合。为了在对聚合物放置、聚合物数量控制和聚合物序列设计具有高度精确性的情况下,自动进行相关介孔聚合物功能化,开发了一种在介孔二氧化硅膜中进行聚合物写入的方法,该膜的孔径范围为 13nm。使用可见光诱导的受控光电/能量转移-可逆加成-断裂链转移(PET-RAFT)聚合,在介孔膜中以可调节的聚合物数量对不同的聚合物进行功能化,包括嵌段共聚物功能化,这一过程是自动化进行的。在将这种 PET-RAFT 转移到商业显微镜上时,证明了三种不同聚合物的直接、自动激光写入以及聚合物重新引发。使用直径约为 72µm 的激光,实现了直径约为 7µm 的明显更小的聚合物点。能够在毫米级的大面积上写入包括嵌段共聚物在内的具有微尺度分辨率的聚合物图像,每个聚合物点的写入时间在 1 秒范围内。