Suppr超能文献

实时比率光学纳米尺度测温法

Real-Time Ratiometric Optical Nanoscale Thermometry.

机构信息

Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk142190, Russia.

Lebedev Physics Institute, Russian Academy of Sciences, Moscow117924, Russia.

出版信息

ACS Nano. 2023 Feb 14;17(3):2725-2736. doi: 10.1021/acsnano.2c10974. Epub 2023 Jan 20.

Abstract

All-optical nanothermometry has become a powerful, remote tool for measuring nanoscale temperatures in applications ranging from medicine to nano-optics and solid-state nanodevices. The key features of any candidate nanothermometer are brightness, sensitivity, and (signal, spatial, and temporal) resolution. Here, we demonstrate a real-time, diamond-based nanothermometry technique with excellent sensitivity (1.8% K) and record-high resolution (5.8 × 10 K Hz W cm) based on codoped nanodiamonds. The distinct performance of our approach stems from two factors: (i) temperature sensors─nanodiamonds cohosting two group IV color centers─engineered to emit spectrally separated Stokes and anti-Stokes fluorescence signals under excitation by a single laser source and (ii) a parallel detection scheme based on filtering optics and high-sensitivity photon counters for fast readout. We demonstrate the performance of our method by monitoring temporal changes in the local temperature of a microcircuit and a MoTe field-effect transistor. Our work advances a powerful, alternative strategy for time-resolved temperature monitoring and mapping of micro-/nanoscale devices such as microfluidic channels, nanophotonic circuits, and nanoelectronic devices, as well as complex biological environments such as tissues and cells.

摘要

全光学纳米测温技术已成为一种强大的、远程的工具,可用于测量从医学到纳米光学和固态纳米器件等各种应用中的纳米级温度。任何候选纳米温度计的关键特征是亮度、灵敏度和(信号、空间和时间)分辨率。在这里,我们展示了一种基于共掺杂纳米金刚石的实时、基于金刚石的纳米测温技术,具有出色的灵敏度(1.8% K)和创纪录的高分辨率(5.8 × 10 K Hz W cm)。我们的方法具有独特的性能,这源于两个因素:(i)温度传感器——纳米金刚石共宿主两个 IV 族色心——在单个激光源激发下设计为发射光谱分离的斯托克斯和反斯托克斯荧光信号;(ii)基于滤波光学和高灵敏度光子计数器的平行检测方案,用于快速读出。我们通过监测微电路和 MoTe 场效应晶体管局部温度的时间变化来演示我们方法的性能。我们的工作推进了一种强大的、替代策略,用于微/纳米尺度器件(如微流道、纳米光子电路和纳米电子器件)以及复杂的生物环境(如组织和细胞)的时变温度监测和映射。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验