Sedletsky Yu V, Gandzha I S
Institute of Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine.
Phys Rev E. 2022 Dec;106(6-1):064212. doi: 10.1103/PhysRevE.106.064212.
We derive an extended cubic-quintic nonlinear Schrödinger equation with Hamiltonian structure in a nonlinear Klein-Gordon model with cubic-quintic nonlinearity. We use the nonlinear dispersion relation to properly take into account the input of high-order nonlinear effects in the Hamiltonian perturbation approach to nonlinear modulation. We demonstrate that changing the balance between the cubic and quintic nonlinearities has a significant effect on the stability of unmodulated wave packets to long-wave modulations.
我们在具有三次-五次非线性的非线性克莱因-戈登模型中推导出了一个具有哈密顿结构的扩展三次-五次非线性薛定谔方程。在哈密顿微扰法处理非线性调制时,我们利用非线性色散关系来恰当地考虑高阶非线性效应的输入。我们证明,改变三次和五次非线性之间的平衡对未调制波包对于长波调制的稳定性有显著影响。