Suppr超能文献

弹性体嵌入的多路复用光纤传感器系统用于多平面形状重建。

Elastomer-Embedded Multiplexed Optical Fiber Sensor System for Multiplane Shape Reconstruction.

机构信息

Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, Brazil.

出版信息

Sensors (Basel). 2023 Jan 15;23(2):994. doi: 10.3390/s23020994.

Abstract

This paper presents the development and application of a multiplexed intensity variation-based sensor system for multiplane shape reconstruction. The sensor is based on a polymer optical fiber (POF) with sequential lateral sections coupled with a flexible light-emitting diode (LED) belt. The optical source modulation enables the development of 30 independent sensors using one photodetector, where the sensor system is embedded in polydimethylsiloxane (PDMS) resin in two configurations. Configuration 1 is a continuous PDMS layer applied in the interface between the flexible LED belt and the POF, whereas Configuration 2 comprises a 20 mm length PDMS layer only on each lateral section and LED region. The finite element method (FEM) is employed for the strain distribution evaluation in different conditions, including the strain distribution on the sensor system subjected to momentums in roll, pitch and yaw conditions. The experimental results of pressure application at 30 regions for each configuration indicated a higher sensitivity of Configuration 1 (83.58 a.u./kPa) when compared with Configuration 2 (40.06 a.u./kPa). However, Configuration 2 presented the smallest cross-sensitivity between sequential sensors (0.94 a.u./kPa against 45.5 a.u./kPa of Configuration 1). Then, the possibility of real-time loading condition monitoring and shape reconstruction is evaluated using Configuration 1 subjected to momentums in roll, pitch and yaw, as well as mechanical waves applied on the sensor structure. The strain distribution on the sensor presented the same pattern as the one obtained in the simulations, and the real-time response of each sensor was obtained for each case. In addition, the possibility of real-time loading condition estimation is analyzed using the k-means algorithm (an unsupervised machine learning approach) for the clusterization of data regarding the loading condition. The comparison between the predicted results and the real ones shows a 90.55% success rate. Thus, the proposed sensor device is a feasible alternative for integrated sensing in movement analysis, structural health monitoring submitted to dynamic loading and robotics for the assessment of the robot structure.

摘要

本文提出了一种基于强度变化的多路复用传感器系统,用于多平面形状重建。该传感器基于具有顺序横向部分的聚合物光纤(POF),与柔性发光二极管(LED)带耦合。光源调制使我们能够使用一个光电探测器开发 30 个独立的传感器,其中传感器系统以两种配置嵌入到聚二甲基硅氧烷(PDMS)树脂中。配置 1 是应用于柔性 LED 带和 POF 之间界面的连续 PDMS 层,而配置 2 仅在每个横向部分和 LED 区域上具有 20 毫米长的 PDMS 层。有限元法(FEM)用于评估不同条件下的应变分布,包括在滚动、俯仰和偏航条件下传感器系统上的应变分布。对于每个配置的 30 个区域施加压力的实验结果表明,与配置 2(40.06 a.u./kPa)相比,配置 1 的灵敏度更高(83.58 a.u./kPa)。然而,配置 2 呈现出顺序传感器之间最小的交叉灵敏度(0.94 a.u./kPa 对配置 1 的 45.5 a.u./kPa)。然后,使用在滚动、俯仰和偏航条件下受到动量以及机械波作用于传感器结构的配置 1 来评估实时加载条件监测和形状重建的可能性。传感器上的应变分布呈现出与模拟中获得的相同模式,并且为每种情况都获得了每个传感器的实时响应。此外,使用 k-均值算法(一种无监督机器学习方法)对有关加载条件的数据进行聚类,分析了实时加载条件估计的可能性。预测结果与实际结果的比较表明成功率为 90.55%。因此,所提出的传感器设备是运动分析中集成传感、动态加载下的结构健康监测以及机器人结构评估的机器人学的可行替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9ab/9863505/3980ae635655/sensors-23-00994-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验