Suppr超能文献

γ因子对贝叶斯惩罚似然重建(Q.Clear)惩罚函数以实现高分辨率PET图像的影响。

Impact of γ factor in the penalty function of Bayesian penalized likelihood reconstruction (Q.Clear) to achieve high-resolution PET images.

作者信息

Miwa Kenta, Yoshii Tokiya, Wagatsuma Kei, Nezu Shogo, Kamitaka Yuto, Yamao Tensho, Kobayashi Rinya, Fukuda Shohei, Yakushiji Yu, Miyaji Noriaki, Ishii Kenji

机构信息

Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima, 960-8516, Japan.

Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.

出版信息

EJNMMI Phys. 2023 Jan 22;10(1):4. doi: 10.1186/s40658-023-00527-w.

Abstract

BACKGROUND

The Bayesian penalized likelihood PET reconstruction (BPL) algorithm, Q.Clear (GE Healthcare), has recently been clinically applied to clinical image reconstruction. The BPL includes a relative difference penalty (RDP) as a penalty function. The β value that controls the behavior of RDP determines the global strength of noise suppression, whereas the γ factor in RDP controls the degree of edge preservation. The present study aimed to assess the effects of various γ factors in RDP on the ability to detect sub-centimeter lesions.

METHODS

All PET data were acquired for 10 min using a Discovery MI PET/CT system (GE Healthcare). We used a NEMA IEC body phantom containing spheres with inner diameters of 10, 13, 17, 22, 28 and 37 mm and 4.0, 5.0, 6.2, 7.9, 10 and 13 mm. The target-to-background ratio of the phantom was 4:1, and the background activity concentration was 5.3 kBq/mL. We also evaluated cold spheres containing only non-radioactive water with the same background activity concentration. All images were reconstructed using BPL + time of flight (TOF). The ranges of β values and γ factors in BPL were 50-600 and 2-20, respectively. We reconstructed PET images using the Duetto toolbox for MATLAB software. We calculated the % hot contrast recovery coefficient (CRC) of each hot sphere, the cold CRC (CRC) of each cold sphere, the background variability (BV) and residual lung error (LE). We measured the full width at half maximum (FWHM) of the micro hollow hot spheres ≤ 13 mm to assess spatial resolution on the reconstructed PET images.

RESULTS

The CRC and CRC for different β values and γ factors depended on the size of the small spheres. The CRC CRC and BV increased along with the γ factor. A 6.2-mm hot sphere was obvious in BPL as lower β values and higher γ factors, whereas γ factors ≥ 10 resulted in images with increased background noise. The FWHM became smaller when the γ factor increased.

CONCLUSION

High and low γ factors, respectively, preserved the edges of reconstructed PET images and promoted image smoothing. The BPL with a γ factor above the default value in Q.Clear (γ factor = 2) generated high-resolution PET images, although image noise slightly diverged. Optimizing the β value and the γ factor in BPL enabled the detection of lesions ≤ 6.2 mm.

摘要

背景

贝叶斯惩罚似然PET重建(BPL)算法,即Q.Clear(通用电气医疗集团),最近已应用于临床图像重建。BPL包括相对差异惩罚(RDP)作为惩罚函数。控制RDP行为的β值决定了噪声抑制的全局强度,而RDP中的γ因子控制边缘保留程度。本研究旨在评估RDP中不同γ因子对检测亚厘米级病变能力的影响。

方法

使用Discovery MI PET/CT系统(通用电气医疗集团)采集所有PET数据10分钟。我们使用了一个NEMA IEC体模,其中包含内径为10、13、17、22、28和37毫米以及4.0、5.0、6.2、7.9、10和13毫米的球体。体模的靶本底比为4:1,本底活度浓度为5.3 kBq/mL。我们还评估了仅含有非放射性水且本底活度浓度相同的冷球体。所有图像均使用BPL+飞行时间(TOF)进行重建。BPL中β值和γ因子的范围分别为50 - 600和2 - 20。我们使用用于MATLAB软件的Duetto工具箱重建PET图像。我们计算了每个热球体的%热对比恢复系数(CRC)、每个冷球体的冷CRC(CRC)、本底变异性(BV)和残余肺误差(LE)。我们测量了内径≤13毫米的微小空心热球体的半高宽(FWHM),以评估重建PET图像上的空间分辨率。

结果

不同β值和γ因子的CRC和CRC取决于小球体的大小。CRC、CRC和BV随γ因子增加。在较低β值和较高γ因子的BPL中,一个6.2毫米的热球体很明显,而γ因子≥10会导致图像本底噪声增加。当γ因子增加时,FWHM变小。

结论

高γ因子和低γ因子分别保留了重建PET图像的边缘并促进了图像平滑。在Q.Clear(γ因子 = 2)中,γ因子高于默认值的BPL生成了高分辨率的PET图像,尽管图像噪声略有差异。优化BPL中的β值和γ因子能够检测≤6.2毫米的病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验