Suppr超能文献

糖原代谢是在低地球轨道快速光照-黑暗循环中优化蓝细菌生长所必需的。

Glycogen metabolism is required for optimal cyanobacterial growth in the rapid light-dark cycle of low-Earth orbit.

机构信息

Department of Molecular Biology, University of California San Diego, 92093 La Jolla, CA, United States.

Department of Molecular Biology, University of California San Diego, 92093 La Jolla, CA, United States.

出版信息

Life Sci Space Res (Amst). 2023 Feb;36:18-26. doi: 10.1016/j.lssr.2022.11.001. Epub 2022 Nov 4.

Abstract

Some designs for bioregenerative life support systems to enable human space missions incorporate cyanobacteria for removal of carbon dioxide, generation of oxygen, and treatment of wastewater, as well as providing a source of nutrition. In this study, we examined the effects of the short light-dark (LD) cycle of low-Earth orbit on algal and cyanobacterial growth, approximating conditions on the International Space Station, which orbits Earth roughly every 90 min. We found that growth of green algae was similar in both normal 12 h light:12 h dark (12 h:12 h LD) and 45':45' LD cycles. Three diverse strains of cyanobacteria were not only capable of growth in short 45':45' LD cycles, but actually grew better than in 12 h:12 h LD cycles. We showed that 45':45' LD cycles do not affect the endogenous 24 h circadian rhythms of Synechococcus elongatus. Using a dense library of randomly barcoded transposon mutants, we identified genes whose loss is detrimental for the growth of S. elongatus under 45':45' LD cycles. These include several genes involved in glycogen metabolism and the oxidative pentose phosphate pathway. Notably, 45':45' LD cycles did not affect the fitness of strains that carry mutations in the biological circadian oscillator or the clock input and output regulatory pathways. Overall, this study shows that cultures of cyanobacteria could be grown under natural sunlight of low-Earth orbit and highlights the utility of a functional genomic study in a model organism to better understand key biological processes in conditions that are relevant to space travel.

摘要

一些用于实现载人航天任务的生物再生生命支持系统的设计方案包含蓝藻,用于去除二氧化碳、产生氧气和处理废水,并提供营养来源。在这项研究中,我们研究了低地球轨道的短明暗(LD)周期对藻类和蓝藻生长的影响,这种周期近似于国际空间站的条件,空间站大约每 90 分钟绕地球运行一次。我们发现,绿藻在正常的 12 小时光照:12 小时黑暗(12 h:12 h LD)和 45':45' LD 周期中生长情况相似。三种不同的蓝藻菌株不仅能够在短的 45':45' LD 周期中生长,而且实际上比在 12 h:12 h LD 周期中生长得更好。我们表明,45':45' LD 周期不会影响 Synechococcus elongatus 的内源性 24 小时昼夜节律。使用随机条形码转座子突变体的密集文库,我们鉴定了一些基因,这些基因的缺失对 S. elongatus 在 45':45' LD 周期下的生长不利。这些基因包括参与糖原代谢和氧化戊糖磷酸途径的几个基因。值得注意的是,45':45' LD 周期不会影响携带生物钟振荡器或时钟输入和输出调节途径突变的菌株的适应性。总的来说,这项研究表明,蓝藻培养物可以在低地球轨道的自然光下生长,并强调了在模式生物中进行功能基因组研究以更好地了解与太空旅行相关条件下关键生物学过程的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ca3/9989776/dca921b293f2/nihms-1872350-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验