School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
European Commission, Joint Research Centre (JRC), Ispra, Italy.
Arch Toxicol. 2023 Mar;97(3):721-735. doi: 10.1007/s00204-022-03439-3. Epub 2023 Jan 22.
Amongst omics technologies, metabolomics should have particular value in regulatory toxicology as the measurement of the molecular phenotype is the closest to traditional apical endpoints, whilst offering mechanistic insights into the biological perturbations. Despite this, the application of untargeted metabolomics for point-of-departure (POD) derivation via benchmark concentration (BMC) modelling is still a relatively unexplored area. In this study, a high-throughput workflow was applied to derive PODs associated with a chemical exposure by measuring the intracellular metabolome of the HepaRG cell line following treatment with one of four chemicals (aflatoxin B, benzo[a]pyrene, cyclosporin A, or rotenone), each at seven concentrations (aflatoxin B, benzo[a]pyrene, cyclosporin A: from 0.2048 μM to 50 μM; rotenone: from 0.04096 to 10 μM) and five sampling time points (2, 6, 12, 24 and 48 h). The study explored three approaches to derive PODs using benchmark concentration modelling applied to single features in the metabolomics datasets or annotated metabolites or lipids: (1) the 1st rank-ordered unannotated feature, (2) the 1st rank-ordered putatively annotated feature (using a recently developed HepaRG-specific library of polar metabolites and lipids), and (3) 25th rank-ordered feature, demonstrating that for three out of four chemical datasets all of these approaches led to relatively consistent BMC values, varying less than tenfold across the methods. In addition, using the 1st rank-ordered unannotated feature it was possible to investigate temporal trends in the datasets, which were shown to be chemical specific. Furthermore, a possible integration of metabolomics-driven POD derivation with the liver steatosis adverse outcome pathway (AOP) was demonstrated. The study highlights that advances in technologies enable application of in vitro metabolomics at scale; however, greater confidence in metabolite identification is required to ensure PODs are mechanistically anchored.
在组学技术中,代谢组学在监管毒理学中应该具有特殊的价值,因为分子表型的测量最接近传统的顶端终点,同时提供了对生物扰动的机制见解。尽管如此,非靶向代谢组学在通过基准浓度 (BMC) 建模进行起始点 (POD) 推导中的应用仍然是一个相对未探索的领域。在这项研究中,通过测量四种化学物质(黄曲霉毒素 B、苯并[a]芘、环孢素 A 或鱼藤酮)之一处理 HepaRG 细胞系后的细胞内代谢组,应用高通量工作流程来推导与化学暴露相关的 POD,每种化学物质有七个浓度(黄曲霉毒素 B、苯并[a]芘、环孢素 A:从 0.2048 μM 到 50 μM;鱼藤酮:从 0.04096 到 10 μM)和五个采样时间点(2、6、12、24 和 48 h)。该研究探索了三种方法来使用基准浓度建模推导 POD,方法是将代谢组学数据集中的单个特征、注释代谢物或脂质应用于单个特征:(1)排名第一的未注释特征,(2)排名第一的推测注释特征(使用最近开发的 HepaRG 特定的极性代谢物和脂质库),以及(3)排名第 25 的特征,结果表明,对于四个化学数据集的三个数据集,所有这些方法都导致相对一致的 BMC 值,在方法之间变化不超过十倍。此外,使用排名第一的未注释特征,可以研究数据集中的时间趋势,结果表明这些趋势是化学物质特异性的。此外,还证明了代谢组学驱动的 POD 推导与肝脂肪变性不良结局途径 (AOP) 的可能整合。该研究强调,技术的进步使得能够大规模应用体外代谢组学;然而,需要更高的代谢物鉴定置信度来确保 POD 具有机制基础。