Suppr超能文献

一种用于识别阅读障碍个体的贝叶斯概率框架。

A Bayesian Probabilistic Framework for Identification of Individuals with Dyslexia.

作者信息

Wagner Richard K, Moxley Jerad, Schatschneider Chris, Zirps Fotena A

机构信息

Department of Psychology and Florida Center for Reading Research, Florida State University.

Weill Cornell Medicine.

出版信息

Sci Stud Read. 2023;27(1):67-81. doi: 10.1080/10888438.2022.2118057. Epub 2022 Dec 22.

Abstract

PURPOSE

Bayesian-based models for diagnosis are common in medicine but have not been incorporated into identification models for dyslexia. The purpose of the present study was to evaluate Bayesian identification models that included a broader set of predictors and that capitalized on recent developments in modeling the prevalence of dyslexia.

METHOD

Model-based meta-analysis was used to create a composite correlation matrix that included common predictors of dyslexia such as decoding, phonological awareness, oral language, but also included response to intervention (RTI) and family risk for dyslexia. Bayesian logistic regression models were used to predict poor reading comprehension, unexpectedly poor reading comprehension, poor decoding, and unexpectedly poor decoding, all at two levels of severity.

RESULTS

Most predictors made independent and substantial contributions to prediction, supporting models of dyslexia that rely on multiple rather than single indicators. RTI was the strongest predictor of poor reading comprehension and unexpectedly poor reading comprehension. Phonological awareness was the strongest predictor of poor decoding and unexpectedly poor decoding, followed closely by family risk.

CONCLUSION

Bayesian-based models are a promising tool for implementing multiple-indicator models of identification. Ideas for improving prediction and implications for theory and practice are discussed.

摘要

目的

基于贝叶斯的诊断模型在医学中很常见,但尚未纳入诵读困难的识别模型。本研究的目的是评估贝叶斯识别模型,该模型纳入了更广泛的预测因素,并利用了近期在诵读困难患病率建模方面的进展。

方法

基于模型的元分析用于创建一个综合相关矩阵,其中包括诵读困难的常见预测因素,如解码、语音意识、口语,还包括对干预的反应(RTI)和诵读困难的家族风险。贝叶斯逻辑回归模型用于预测阅读理解能力差、意外的阅读理解能力差、解码能力差和意外的解码能力差,所有这些都在两个严重程度级别上进行预测。

结果

大多数预测因素对预测做出了独立且重大的贡献,支持了依赖多个而非单一指标的诵读困难模型。RTI是阅读理解能力差和意外的阅读理解能力差的最强预测因素。语音意识是解码能力差和意外的解码能力差的最强预测因素,家族风险紧随其后。

结论

基于贝叶斯的模型是实施多指标识别模型的一个有前途的工具。讨论了改进预测的思路以及对理论和实践的启示。

相似文献

1
A Bayesian Probabilistic Framework for Identification of Individuals with Dyslexia.
Sci Stud Read. 2023;27(1):67-81. doi: 10.1080/10888438.2022.2118057. Epub 2022 Dec 22.
4
Reading disorders and dyslexia.
Curr Opin Pediatr. 2016 Dec;28(6):731-735. doi: 10.1097/MOP.0000000000000411.
5
Reading comprehension in children with specific language impairment: an examination of two subgroups.
Int J Lang Commun Disord. 2007 Jan-Feb;42(1):39-57. doi: 10.1080/13682820600693013.
6
Predicting Dyslexia in Children With Developmental Language Disorder.
J Speech Lang Hear Res. 2020 Jan 7;63(1):151-162. doi: 10.1044/2019_JSLHR-L-18-0265. Print 2020 Jan 22.
8
Development and validation of a reading-related assessment battery in Malay for the purpose of dyslexia assessment.
Ann Dyslexia. 2008 Jun;58(1):37-57. doi: 10.1007/s11881-007-0011-0. Epub 2008 Feb 22.
9
Persistence of dyslexia: the Connecticut Longitudinal Study at adolescence.
Pediatrics. 1999 Dec;104(6):1351-9. doi: 10.1542/peds.104.6.1351.
10
Specific language impairment and developmental dyslexia: What are the boundaries? Data from Greek children.
Res Dev Disabil. 2016 Feb-Mar;49-50:339-53. doi: 10.1016/j.ridd.2015.12.014. Epub 2016 Jan 7.

引用本文的文献

2
Dyslexia in the twenty-first century: a commentary on the IDA definition of dyslexia.
Ann Dyslexia. 2024 Oct;74(3):363-377. doi: 10.1007/s11881-024-00311-0. Epub 2024 Jun 15.
3
Revisiting the definition of dyslexia.
Ann Dyslexia. 2024 Oct;74(3):282-302. doi: 10.1007/s11881-023-00295-3. Epub 2024 Jan 9.

本文引用的文献

3
Annual Research Review: Reading disorders revisited - the critical importance of oral language.
J Child Psychol Psychiatry. 2021 May;62(5):635-653. doi: 10.1111/jcpp.13324. Epub 2020 Sep 21.
4
The Prevalence of Dyslexia: A New Approach to Its Estimation.
J Learn Disabil. 2020 Sep/Oct;53(5):354-365. doi: 10.1177/0022219420920377. Epub 2020 May 26.
5
The Multiple Deficit Model: Progress, Problems, and Prospects.
Sci Stud Read. 2020;24(1):7-13. doi: 10.1080/10888438.2019.1706180. Epub 2019 Dec 24.
7
Co-occurrence of Reading Disabilities and Math Disabilities: A Meta-Analysis.
Sci Stud Read. 2020;24(1):14-22. doi: 10.1080/10888438.2019.1593420. Epub 2019 Apr 3.
9
Combining Old and New for Better Understanding and Predicting Dyslexia.
New Dir Child Adolesc Dev. 2019 May;2019(165):11-23. doi: 10.1002/cad.20289. Epub 2019 Apr 30.
10
Testing moderator hypotheses in meta-analytic structural equation modeling using subgroup analysis.
Behav Res Methods. 2018 Aug;50(4):1359-1373. doi: 10.3758/s13428-018-1046-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验