文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Vascular smooth muscle cells in intimal hyperplasia, an update.

作者信息

Déglise Sébastien, Bechelli Clémence, Allagnat Florent

机构信息

Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland.

出版信息

Front Physiol. 2023 Jan 4;13:1081881. doi: 10.3389/fphys.2022.1081881. eCollection 2022.


DOI:10.3389/fphys.2022.1081881
PMID:36685215
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9845604/
Abstract

Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9918/9845604/a2d1dfbeb150/FPHYS_fphys-2022-1081881_wc_sch3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9918/9845604/8677bd25bdb2/FPHYS_fphys-2022-1081881_wc_sch1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9918/9845604/0dfe86d5b050/FPHYS_fphys-2022-1081881_wc_sch2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9918/9845604/a2d1dfbeb150/FPHYS_fphys-2022-1081881_wc_sch3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9918/9845604/8677bd25bdb2/FPHYS_fphys-2022-1081881_wc_sch1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9918/9845604/0dfe86d5b050/FPHYS_fphys-2022-1081881_wc_sch2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9918/9845604/a2d1dfbeb150/FPHYS_fphys-2022-1081881_wc_sch3.jpg

相似文献

[1]
Vascular smooth muscle cells in intimal hyperplasia, an update.

Front Physiol. 2023-1-4

[2]
Clinical Use of Hydrogen Sulfide to Protect Against Intimal Hyperplasia.

Front Cardiovasc Med. 2022-4-11

[3]
[Role of cytokine-matrix metalloproteinase axis on promoting vascular neointima hyperplasia in mice].

Zhonghua Xin Xue Guan Bing Za Zhi. 2016-11-24

[4]
Hydrogen sulfide-releasing peptide hydrogel limits the development of intimal hyperplasia in human vein segments.

Acta Biomater. 2019-7-26

[5]
Zinc finger protein 191 deficiency attenuates vascular smooth muscle cell proliferation, migration, and intimal hyperplasia after endovascular arterial injury.

J Vasc Surg. 2013-6-4

[6]
Connexin37 reduces smooth muscle cell proliferation and intimal hyperplasia in a mouse model of carotid artery ligation.

Cardiovasc Res. 2017-6-1

[7]
Smooth muscle cell-specific knockout of interferon gamma (IFN-γ) receptor attenuates intimal hyperplasia via STAT1-KLF4 activation.

Life Sci. 2021-5-25

[8]
Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis.

Ann Rheum Dis. 2017-6-12

[9]
Salusin-β Promotes Vascular Smooth Muscle Cell Migration and Intimal Hyperplasia After Vascular Injury via ROS/NFκB/MMP-9 Pathway.

Antioxid Redox Signal. 2016-4-8

[10]
Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia.

Cardiovasc Res. 2015-5-1

引用本文的文献

[1]
Recellularization of decellularized vascular grafts via aligned seeding of endothelial cells derived from human iPS cells.

Sci Rep. 2025-9-3

[2]
Arterial stiffness and vascular aging: mechanisms, prevention, and therapy.

Signal Transduct Target Ther. 2025-9-1

[3]
A Distinct miRNA Profile in Intimal Hyperplasia of Failed Arteriovenous Fistulas Reveals Key Pathogenic Pathways.

Biomolecules. 2025-7-23

[4]
A novel paclitaxel eluting bioresorbable vascular stent with a super flexible stent structure and round cross section struts fabricated using 3D printing technology with a rotating platform.

Regen Biomater. 2025-7-9

[5]
Contribution of NLRP3-GSDMD axis to PDGF-BB-induced vascular smooth muscle cell phenotypic transition.

Am J Physiol Cell Physiol. 2025-8-1

[6]
Combined genome and transcriptome analysis identifies molecular signatures of aortic disease in patients with Marfan syndrome.

J Mol Cell Cardiol Plus. 2025-6-19

[7]
Noninvasive real-time monitoring of cellular spatiotemporal dynamics via machine learning-enhanced electrical impedance spectroscopy.

Sci Adv. 2025-7-18

[8]
Role of Serotonin, Membrane Transporter, and 5-HT2 Receptors in Pathogenesis of Atherosclerotic Plaque Formation in Immature Heterozygous Low-Density Lipoprotein-Receptor-Deficient Mice.

Int J Mol Sci. 2025-6-26

[9]
Fortilin deficiency induces anti-atherosclerotic phenotypes in macrophages and protects hypercholesterolemic mice against atherosclerosis.

Commun Biol. 2025-7-11

[10]
A novel decellularization protocol with cryopreservation of pulmonary allografts in an ovine model.

Interdiscip Cardiovasc Thorac Surg. 2025-6-4

本文引用的文献

[1]
Sodium thiosulfate, a source of hydrogen sulfide, stimulates endothelial cell proliferation and neovascularization.

Front Cardiovasc Med. 2022-10-3

[2]
Smad3 regulates smooth muscle cell fate and mediates adverse remodeling and calcification of the atherosclerotic plaque.

Nat Cardiovasc Res. 2022-4

[3]
TLR-4 Inhibition Attenuates Inflammation, Thrombosis, and Stenosis in Arteriovenous Fistula in Yucatan Miniswine.

Cardiol Cardiovasc Med. 2022

[4]
Recent advances of the mammalian target of rapamycin signaling in mesenchymal stem cells.

Front Genet. 2022-8-30

[5]
Cellular mechanisms of oligoclonal vascular smooth muscle cell expansion in cardiovascular disease.

Cardiovasc Res. 2023-5-22

[6]
Arterial cyclic stretch regulates Lamtor1 and promotes neointimal hyperplasia via circSlc8a1/miR-20a-5p axis in vein grafts.

Theranostics. 2022

[7]
Novel Drugs with High Efficacy against Tumor Angiogenesis.

Int J Mol Sci. 2022-6-22

[8]
Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist).

Cells. 2022-6-30

[9]
Cellular Crosstalk in the Vascular Wall Microenvironment: The Role of Exosomes in Vascular Calcification.

Front Cardiovasc Med. 2022-5-23

[10]
Endovascular treatment of femoropopliteal arterial occlusive disease: Current techniques and limitations.

Semin Vasc Surg. 2022-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索