Suppr超能文献

基于循环肿瘤DNA突变特征的食管鳞状细胞癌患者临床预后模型

A clinical prognostic model for patients with esophageal squamous cell carcinoma based on circulating tumor DNA mutation features.

作者信息

Liu Tao, Li Mengxing, Cheng Wen, Yao Qianqian, Xue Yibo, Wang Xiaowei, Jin Hai

机构信息

Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.

Department of Medical Science, Shanghai AccuraGen Biotechnology Co., Ltd., Shanghai, China.

出版信息

Front Oncol. 2023 Jan 5;12:1025284. doi: 10.3389/fonc.2022.1025284. eCollection 2022.

Abstract

BACKGROUND

Few predictive models have included circulating tumor DNA (ctDNA) indicators to predict prognosis of esophageal squamous cell carcinoma (ESCC) patients. Here, we aimed to explore whether ctDNA can be used as a predictive biomarker in nomogram models to predict the prognosis of patients with ESCC.

METHODS

We included 57 patients who underwent surgery and completed a 5-year follow-up. With next-generation sequencing, a 61-gene panel was used to evaluate plasma cell-free DNA and white blood cell genomic DNA from patients with ESCC. We analyzed the relationship between the mutation features of ctDNA and the prognosis of patients with ESCC, identified candidate risk predictors by Cox analysis, and developed nomogram models to predict the 2- and 5-year disease-free survival (DFS) and overall survival (OS). The area under the curve of the receiver operating characteristic (ROC) curve, concordance index (C-index), calibration plot, and integrated discrimination improvement (IDI) were used to evaluate the performance of the nomogram model. The model was compared with the traditional tumor-nodes-metastasis (TNM) staging system.

RESULTS

The ROC curve showed that the average mutant allele frequency (MAF) of ctDNA variants and the number of ctDNA variants were potential biomarkers for predicting the prognosis of patients with ESCC. The predictors included in the models were common candidate predictors of ESCC, such as lymph node stage, angiolymphatic invasion, drinking history, and ctDNA characteristics. The calibration curve demonstrated consistency between the observed and predicted results. Moreover, our nomogram models showed clear prognostic superiority over the traditional TNM staging system (based on C-index, 2-year DFS: 0.82 vs. 0.64; 5-year DFS: 0.78 vs. 0.65; 2-year OS: 0.80 vs. 0.66; 5-year OS: 0.77 vs. 0.66; based on IDI, 2-year DFS: 0.33, 0.001; 5-year DFS: 0.18, = 0.04; 2-year OS: 0.28, 0.001; 5-year OS: 0.15, = 0.04). The comprehensive scores of the nomogram models could be used to stratify patients with ESCC.

CONCLUSIONS

The novel nomogram incorporating ctDNA features may help predict the prognosis of patients with resectable ESCC. This model can potentially be used to guide the postoperative management of ESCC patients in the future, such as adjuvant therapy and follow-up.

摘要

背景

很少有预测模型纳入循环肿瘤DNA(ctDNA)指标来预测食管鳞状细胞癌(ESCC)患者的预后。在此,我们旨在探讨ctDNA是否可作为列线图模型中的预测生物标志物,以预测ESCC患者的预后。

方法

我们纳入了57例行手术并完成5年随访的患者。采用新一代测序技术,使用一个61基因panel评估ESCC患者的血浆游离DNA和白细胞基因组DNA。我们分析了ctDNA的突变特征与ESCC患者预后之间的关系,通过Cox分析确定候选风险预测因子,并构建列线图模型来预测2年和5年无病生存期(DFS)及总生存期(OS)。采用受试者操作特征(ROC)曲线下面积、一致性指数(C-index)、校准图和综合判别改善(IDI)来评估列线图模型的性能。将该模型与传统的肿瘤-淋巴结-转移(TNM)分期系统进行比较。

结果

ROC曲线显示,ctDNA变异的平均突变等位基因频率(MAF)和ctDNA变异数量是预测ESCC患者预后的潜在生物标志物。模型中纳入的预测因子是ESCC常见的候选预测因子,如淋巴结分期、血管淋巴管侵犯、饮酒史和ctDNA特征。校准曲线显示观察结果与预测结果之间具有一致性。此外,我们的列线图模型在预后预测方面显示出明显优于传统TNM分期系统(基于C-index,2年DFS:0.82对0.64;5年DFS:0.78对0.65;2年OS:0.80对0.66;5年OS:0.77对0.66;基于IDI,2年DFS:0.33,P = 0.001;5年DFS:0.18,P = 0.04;2年OS:0.28,P = 0.001;5年OS:0.15,P = 0.04)。列线图模型的综合评分可用于对ESCC患者进行分层。

结论

纳入ctDNA特征的新型列线图可能有助于预测可切除ESCC患者的预后。该模型未来有可能用于指导ESCC患者的术后管理,如辅助治疗和随访。

相似文献

10
Development of a prognostic nomogram and risk stratification system for upper thoracic esophageal squamous cell carcinoma.
Front Oncol. 2023 Apr 12;13:1059539. doi: 10.3389/fonc.2023.1059539. eCollection 2023.

引用本文的文献

本文引用的文献

1
Circulating tumor DNA predicts outcome in metastatic gastroesophageal cancer.
Gastric Cancer. 2022 Sep;25(5):906-915. doi: 10.1007/s10120-022-01313-w. Epub 2022 Jun 28.
4
Genome-wide identification and analysis of prognostic features in human cancers.
Cell Rep. 2022 Mar 29;38(13):110569. doi: 10.1016/j.celrep.2022.110569.
5
Comprehensive analysis of prognostic value of lymph node classifications in esophageal squamous cell carcinoma: a large real-world multicenter study.
Ther Adv Med Oncol. 2021 Nov 5;13:17588359211054895. doi: 10.1177/17588359211054895. eCollection 2021.
7
Predictive Model for Overall Survival and Cancer-Specific Survival in Patients with Esophageal Adenocarcinoma.
J Oncol. 2021 Sep 14;2021:4138575. doi: 10.1155/2021/4138575. eCollection 2021.
8
Development and Validation of a Clinical Prognostic Nomogram for Esophageal Adenocarcinoma Patients.
Front Oncol. 2021 Sep 2;11:736573. doi: 10.3389/fonc.2021.736573. eCollection 2021.
9
Development and validation of a survival model for esophageal adenocarcinoma based on autophagy-associated genes.
Bioengineered. 2021 Dec;12(1):3434-3454. doi: 10.1080/21655979.2021.1946235.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验