Suppr超能文献

微生物@MIL-125(钛):一种由微生物诱导形成的非晶态金属有机框架及其应用

Microorganisms@MIL-125 (Ti): An Amorphous Metal-Organic Framework Induced by Microorganisms and Their Applications.

作者信息

Xiang Yuqiang, Yan Huaduo, Peng Fei, Ke Weikang, Faheem Aroosha, Li Mingshun, Hu Yonggang

机构信息

State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.

Hubei Hongshan Laboratory, Wuhan 430070, China.

出版信息

ACS Omega. 2023 Jan 4;8(2):2164-2172. doi: 10.1021/acsomega.2c06329. eCollection 2023 Jan 17.

Abstract

Amorphous metal-organic framework (MOF)-based materials have attracted considerable attention as an emerging class of nanomaterials. Herein, novel microorganisms@MIL-125 (Ti) composites including yeast@MIL-125 (Ti), PCC 6803@MIL-125 (Ti), and @MIL-125 (Ti) composites were respectively synthesized by self-assembling MOFs on the microorganisms' surface. The functional groups on the microorganisms' surface induced structural defects and participated in the formation of MIL-125 (Ti) composites. Finally, the application of microorganisms@MIL-125 (Ti) composites for the removal of glyphosate from aqueous solution was selected as a model reaction to illustrate their potential for environmental protection. The present method is not only economical but also has other advantages including ease of operation, environmentally friendly assay, and high adsorption. The maximum adsorption capacity of MIL-125 (Ti) was 1096.25 mg g, which was 1.74 times that of crystalline MIL-125 (Ti). Therefore, the microorganisms@MOFs composites will have broad application prospects in energy storage, drug delivery, catalysis, adsorbing toxic substances, sensing, encapsulating and delivering enzymes, and in other fields.

摘要

非晶态金属有机框架(MOF)基材料作为一类新兴的纳米材料已引起了广泛关注。在此,通过在微生物表面自组装MOF,分别合成了新型微生物@MIL-125(Ti)复合材料,包括酵母@MIL-125(Ti)、集胞藻6803@MIL-125(Ti)以及@MIL-125(Ti)复合材料。微生物表面的官能团诱导了结构缺陷并参与了MIL-125(Ti)复合材料的形成。最后,选择微生物@MIL-125(Ti)复合材料从水溶液中去除草甘膦的应用作为模型反应,以说明它们在环境保护方面的潜力。本方法不仅经济,而且具有操作简便、环境友好检测和高吸附等其他优点。MIL-125(Ti)的最大吸附容量为1096.25 mg/g,是结晶态MIL-125(Ti)的1.74倍。因此,微生物@MOF复合材料在能量存储、药物递送、催化、吸附有毒物质、传感、封装和递送酶以及其他领域将具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/732b/9850781/8bfc0e0d7f26/ao2c06329_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验