Department of Statistics, National College of Business Administration and Economics, Lahore, Pakistan.
School of Statistics, University of Minnesota, Minnesota, Minneapolis, United States of America.
PLoS One. 2023 Jan 23;18(1):e0278619. doi: 10.1371/journal.pone.0278619. eCollection 2023.
In this article, we have proposed a generalized estimator for mean estimation by combining the ratio and regression methods of estimation in the presence of auxiliary information using systematic sampling. We incorporated some robust parameters of the auxiliary variable to obtain precise estimates of the proposed estimator. The mathematical expressions for bias and mean square error of proposed the estimator are derived under large sample approximation. Many other generalized ratio and product-type estimators are obtained from the proposed estimator using different choices of scalar constants. Some special cases are also discussed in which the proposed generalized estimator reduces to the usual mean, classical ratio, product, and regression type estimators. Mathematical conditions are obtained for which the proposed estimator will perform more precisely than the challenging estimators mentioned in this article. The efficiency of the proposed estimator is evaluated using four populations. Results showed that the proposed estimator is efficient and useful for survey sampling in comparison to the other existing estimators.
在本文中,我们提出了一种广义估计器,用于在存在辅助信息的情况下,通过系统抽样结合比率和回归方法进行均值估计。我们结合了辅助变量的一些稳健参数,以获得所提出估计器的精确估计。在大样本近似下,推导出了所提出的估计器的偏差和均方误差的数学表达式。使用不同的标量常数选择,从所提出的估计器中获得了许多其他广义比率和乘积型估计器。还讨论了一些特殊情况,其中所提出的广义估计器简化为常用的均值、经典比率、乘积和回归类型估计器。获得了数学条件,在这些条件下,所提出的估计器将比本文中提到的具有挑战性的估计器表现得更加精确。使用四个总体评估了所提出的估计器的效率。结果表明,与其他现有估计器相比,该估计器在调查抽样中是高效且有用的。