Suppr超能文献

河口湿地中高有机碳积累并不一定代表高 CO2 封存能力。

The high organic carbon accumulation in estuarine wetlands necessarily does not represent a high CO sequestration capacity.

机构信息

Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Department of Energy and Eco-Environment, Zhejiang Development & Planning Institute, Hangzhou 310030, China.

出版信息

Environ Int. 2023 Feb;172:107762. doi: 10.1016/j.envint.2023.107762. Epub 2023 Jan 18.

Abstract

Estuarine wetlands with high organic carbon (OC) accumulation rates due to their high plant biomass and interception of tide-derived OC are generally considered as large CO sinks. However, our previous study found that tidal OC input seems to stimulate soil CO emissions, potentially weakening CO sequestration in estuarine wetlands. To further verify this phenomenon, we first established a structural equation model, which confirmed a positive correlation between tidal OC input and soil organic carbon (SOC) and soil respiration. We then performed trace analysis to determine the stability of SOC derived from different sources and its effect on soil CO emissions by analyzing the input and retention of OC derived from tides and plants in the Yangtze Estuary wetlands. From upstream to downstream, as tidal OC input decreased, the relative retention ratio of the tidal OC in wetland soil increased from 1.259 to 2.148, whereas the relative retention ratio of plant OC in the soil decreased from 61.5% to 14.8%. Our findings indicated that the degradability of tidal OC was higher upstream than that downstream, but both inhibited plant OC degradation, thus providing an important reason for the higher CO emissions upstream of wetlands (with higher tidal OC input). In addition, the primarily contributor to CO (δ) emissions' transforming from plant SOC (81.35%) to tidal SOC (91.18%) was an increase in organic matter input from the tide in a microcosm system. Consequently, a higher CO output than CO input (plant OC) due to the ready degradation of tidal OC consequently weakens the CO sequestration capacity of the estuarine wetlands. This phenomenon is cause for concern regarding the CO sink function of estuarine wetlands intercepting large amounts of organic matter.

摘要

由于具有高植物生物量和截获潮汐有机碳 (OC) 的特点,河口湿地的有机碳(OC)积累率通常较高,被普遍认为是较大的 CO2 汇。然而,我们之前的研究发现,潮汐 OC 的输入似乎刺激了土壤 CO2 的排放,可能会削弱河口湿地的 CO2 固存。为了进一步验证这一现象,我们首先建立了结构方程模型,该模型证实了潮汐 OC 输入与土壤有机碳(SOC)和土壤呼吸之间存在正相关关系。然后,我们通过分析长江口湿地中潮汐和植物来源的 OC 的输入和保留情况,进行示踪分析以确定不同来源 SOC 的稳定性及其对土壤 CO2 排放的影响。从上游到下游,随着潮汐 OC 输入的减少,湿地土壤中潮汐 OC 的相对保留率从 1.259 增加到 2.148,而土壤中植物 OC 的相对保留率则从 61.5%降低到 14.8%。我们的研究结果表明,潮汐 OC 的降解性在上游比下游更高,但都抑制了植物 OC 的降解,这为湿地上游 CO2 排放较高(具有较高的潮汐 OC 输入)提供了重要原因。此外,在一个微宇宙系统中,来自潮汐的有机物质输入的增加是导致 CO(δ)排放从植物 SOC(81.35%)向潮汐 SOC(91.18%)转化的主要原因。因此,由于潮汐 OC 易于降解,导致 CO 输出(潮汐 OC)高于输入(植物 OC),从而削弱了河口湿地的 CO2 固存能力。这种现象引起了人们对河口湿地拦截大量有机物质的 CO2 汇功能的关注。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验