Chemistry, School of Science and Technology, University of New England, Armidale, NSW2351, Australia.
Desalination Technologies Research Institute, Al Jubail31951, Saudi Arabia.
Langmuir. 2023 Feb 7;39(5):1914-1926. doi: 10.1021/acs.langmuir.2c02932. Epub 2023 Jan 23.
High-resolution isotherms of argon and nitrogen adsorption on macroporous silica have been simulated with universal Langmuir and fractal models. A four-parameter, fractal universal Langmuir equation is a good fit to the data at low pressures. Standard Gibbs energy changes calculated from equilibrium adsorption coefficients show a series of broad peaks that indicate adsorbate structural transformations as a function of pressure and coverage. The Freundlich equation or mean fractal model is also a good fit to isotherms at low pressures. Pressure-varying fractals are accurate fits to the data. Fractal exponents provide information on adsorbate coverage and surface access. Broad peaks in pressure-varying exponents are indicators of adsorbate structure. From adsorptive gas amounts, mean and pressure-varying fractal exponents provide details of adsorbate fractal dimensions and surface roughness. Both Ar and N adsorption cause increases in mean surface roughness when compared with pure silica. Surface roughness fluctuations from pressure-dependent adsorptive gas fractal dimensions are associated with adsorbate structure. At one trough, the surface is smooth and is linked to close-packed Ar or N. For Ar adsorption at 87 K, this structure is a complete monolayer (1.00(4)), while for Ar (77 K), 1.15(4) layers and for N (87 K), 2.02(10) layers. The universal Langmuir specific area of the silica is 10.1(4) m g. Pressure- and coverage-dependent adsorbate structures range from filling defects and holes on the surface to cluster formation to adsorbed Ar or N evenly distributed or packed across the surface. The Ar (87 K) isotherm is most sensitive to adsorbate structural transformations.
已使用通用朗缪尔和分形模型模拟了大孔硅胶对氩气和氮气的高分辨率吸附等温线。四参数分形通用朗缪尔方程在低压下非常适合数据拟合。从平衡吸附系数计算得到的标准吉布斯自由能变化表明,随着压力和覆盖度的变化,存在一系列宽峰,表明吸附质结构的转变。弗伦德利希方程或平均分形模型也非常适合在低压下的吸附等温线。变压分形是对数据的精确拟合。分形指数提供了有关吸附剂覆盖度和表面可及性的信息。变压分形指数中的宽峰是吸附质结构的指标。从吸附气体量、平均和变压分形指数中,可以提供吸附质分形维度和表面粗糙度的详细信息。与纯硅胶相比,Ar 和 N 的吸附都会导致平均表面粗糙度增加。表面粗糙度的波动来自于吸附性气体分形维度随压力的变化,与吸附质结构有关。在一个波谷处,表面是光滑的,与紧密堆积的 Ar 或 N 相关。对于 87 K 下的 Ar 吸附,这种结构是完整的单层(1.00(4)),而对于 77 K 下的 Ar,有 1.15(4)层,对于 87 K 下的 N,有 2.02(10)层。硅胶的通用朗缪尔比表面积为 10.1(4) m g。随压力和覆盖度变化的吸附质结构范围从表面的填充缺陷和孔到团簇形成,再到均匀分布或充满整个表面的吸附 Ar 或 N。Ar(87 K)吸附等温线对吸附质结构的转变最为敏感。