文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

液滴的电趋性行为由悬浮在油相中的水性 Belousov-Zhabotinsky 溶液组成。

Electrotaxis behavior of droplets composed of aqueous Belousov-Zhabotinsky solutions suspended in oil phase.

机构信息

Department of Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, UK.

School of Life Sciences, University of Warwick, Coventry, UK.

出版信息

Sci Rep. 2023 Jan 24;13(1):1340. doi: 10.1038/s41598-023-27639-8.


DOI:10.1038/s41598-023-27639-8
PMID:36693937
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9873656/
Abstract

Taxis is ubiquitous in biological and physical chemistry systems as a response to various external stimulations. We prepared aqueous droplets containing Belousov-Zhabotinsky (BZ) solutions suspended on an oleic acid oil phase subject to DC electric field and found that these BZ droplets undergo chemically driven translational motion towards the negative electrode under DC electric field. This electrotaxis phenomenon originates from the field-induced inhomogeneous distribution of reactants, in particular Br[Formula: see text] ions, and consequently the biased location of the leading centers towards the positive electrode. We define the 'leading center' (LC) as a specific location within the droplet where the BZ chemical wave (target pattern) is initiated. The chemical wave generated from the LC propagates passing the droplet center of mass and creates a gradient of interfacial tension when reaching the droplet-oil interface on the other side, resulting in a momentum exchange between the droplet and oil phases which drives the droplet motion in the direction of the electric field. A greater electric field strength renders a more substantial electrotaxis effect.

摘要

在生物和物理化学系统中,电迁移是一种普遍存在的现象,它是对各种外部刺激的响应。我们制备了含有 Belousov-Zhabotinsky(BZ)溶液的水相液滴,悬浮在油酸油相中,并施加直流电场,发现这些 BZ 液滴在直流电场下会发生化学驱动的平移运动,朝着负极移动。这种电迁移现象源于电场诱导的反应物(特别是 Br[Formula: see text]离子)不均匀分布,从而导致引发中心偏向正极的偏置位置。我们将“引发中心”(LC)定义为液滴内引发 BZ 化学波(目标图案)的特定位置。从 LC 产生的化学波传播穿过液滴质心,并在到达另一侧的液-油界面时产生界面张力梯度,从而在液滴和油相之间产生动量交换,驱动液滴朝着电场方向运动。更强的电场强度会产生更大的电迁移效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/f150a95abb6d/41598_2023_27639_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/5b141056e45b/41598_2023_27639_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/c69a326ca93a/41598_2023_27639_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/624a8e1b07e9/41598_2023_27639_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/1d77e0e1122d/41598_2023_27639_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/4ae55f116053/41598_2023_27639_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/78d57843946f/41598_2023_27639_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/849930eecc6f/41598_2023_27639_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/f150a95abb6d/41598_2023_27639_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/5b141056e45b/41598_2023_27639_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/c69a326ca93a/41598_2023_27639_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/624a8e1b07e9/41598_2023_27639_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/1d77e0e1122d/41598_2023_27639_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/4ae55f116053/41598_2023_27639_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/78d57843946f/41598_2023_27639_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/849930eecc6f/41598_2023_27639_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f287/9873656/f150a95abb6d/41598_2023_27639_Fig8_HTML.jpg

相似文献

[1]
Electrotaxis behavior of droplets composed of aqueous Belousov-Zhabotinsky solutions suspended in oil phase.

Sci Rep. 2023-1-24

[2]
Towards Functional Droplet Architectures: a Belousov-Zhabotinsky Medium for Networks.

Sci Rep. 2018-8-23

[3]
Oscillation of Speed of a Self-Propelled Belousov-Zhabotinsky Droplet.

J Phys Chem Lett. 2016-9-1

[4]
Hydrodynamics of a confined active Belousov-Zhabotinsky droplet.

Phys Rev E. 2022-12

[5]
Configurable NOR gate arrays from Belousov-Zhabotinsky micro-droplets.

Eur Phys J Spec Top. 2016-2

[6]
Charge-Powered Electrotaxis for Versatile Droplet Manipulation.

ACS Nano. 2023-6-13

[7]
Photochemical motion control of surface active Belousov-Zhabotinsky droplets.

Chaos. 2020-8

[8]
Chemical oscillators in structured media.

Acc Chem Res. 2011-12-28

[9]
Unraveling Partial Coalescence Between Droplet and Oil-Water Interface in Water-in-Oil Emulsions under a Direct-Current Electric Field via Molecular Dynamics Simulation.

Langmuir. 2024-3-19

[10]
Theory and experiments of spiral unpinning in the Belousov-Zhabotinsky reaction using a circularly polarized electric field.

Chaos. 2023-6-1

引用本文的文献

[1]
The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction.

Front Cell Dev Biol. 2023-10-31

本文引用的文献

[1]
Delayed Mechanical Response to Chemical Kinetics in Self-Oscillating Hydrogels Driven by the Belousov-Zhabotinsky Reaction.

Macromolecules. 2021-7-13

[2]
Electric field assisted motion of a mercury droplet.

Sci Rep. 2021-2-2

[3]
Editorial: Temporal Structure of Neural Processes Coupling Sensory, Motor and Cognitive Functions of the Brain.

Front Comput Neurosci. 2020-9-15

[4]
Photochemical motion control of surface active Belousov-Zhabotinsky droplets.

Chaos. 2020-8

[5]
Chemical Wave Propagation in the Belousov-Zhabotinsky Reaction Controlled by Electrical Potential.

J Phys Chem A. 2019-6-13

[6]
Towards Functional Droplet Architectures: a Belousov-Zhabotinsky Medium for Networks.

Sci Rep. 2018-8-23

[7]
Chemotaxis and autochemotaxis of self-propelling droplet swimmers.

Proc Natl Acad Sci U S A. 2017-5-16

[8]
A simple behaviour provides accuracy and flexibility in odour plume tracking--the robotic control of sensory-motor coupling in silkmoths.

J Exp Biol. 2015-12

[9]
Dynamics of chemotactic droplets in salt concentration gradients.

Langmuir. 2014-10-14

[10]
Spontaneous motion of a droplet coupled with a chemical wave.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索