Suppr超能文献

动态孤对电子表达作为热电材料InTe中巨大声子非谐性的化学键起源

Dynamic Lone Pair Expression as Chemical Bonding Origin of Giant Phonon Anharmonicity in Thermoelectric InTe.

作者信息

Zhang Jiawei, Ishikawa Daisuke, Koza Michael M, Nishibori Eiji, Song Lirong, Baron Alfred Q R, Iversen Bo B

机构信息

Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark.

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.

出版信息

Angew Chem Int Ed Engl. 2023 Mar 20;62(13):e202218458. doi: 10.1002/anie.202218458. Epub 2023 Feb 14.

Abstract

Loosely bonded ("rattling") atoms with s lone pair electrons are usually associated with strong anharmonicity and unexpectedly low thermal conductivity, yet their detailed correlation remains largely unknown. Here we resolve this correlation in thermoelectric InTe by combining chemical bonding analysis, inelastic X-ray and neutron scattering, and first principles phonon calculations. We successfully probe soft low-lying transverse phonons dominated by large In z-axis motions, and their giant anharmonicity. We show that the highly anharmonic phonons arise from the dynamic lone pair expression with unstable occupied antibonding states induced by the covalency between delocalized In 5s lone pair electrons and Te 5p states. This work pinpoints the microscopic origin of strong anharmonicity driven by rattling atoms with stereochemical lone pair activity, important for designing efficient materials for thermoelectric energy conversion.

摘要

具有孤对电子的松散键合(“晃动”)原子通常与强非谐性和出人意料的低热导率相关联,但其详细关联在很大程度上仍不为人知。在此,我们通过结合化学键分析、非弹性X射线和中子散射以及第一性原理声子计算,解析了热电材料碲化铟中的这种关联。我们成功探测到了以铟原子在z轴上的大幅运动为主导的软低频横向声子及其巨大的非谐性。我们表明,高度非谐的声子源于动态孤对电子的表现,这种表现是由离域的铟5s孤对电子与碲5p态之间的共价性所诱导的不稳定占据反键态引起的。这项工作明确了由具有立体化学孤对电子活性的晃动原子驱动的强非谐性的微观起源,这对于设计高效的热电能量转换材料具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验